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Foreword

These notes present an overview of my research in statistics, with some incursions
in applied probability, since my PhD thesis in 2009 [14]. In this PhD, I studied
least-squares density estimation by model selection, I got particularly interested in
resampling penalization to build data-driven procedures when the data are not in-
dependent but only weakly dependent [10, 11, 13]. I also used resampling estimators
to build confidence balls for the density in [12].
I studied with S. Arlot cross-validation schemes for model selection. Even if we
started working on this project right after my PhD, we only finished our first paper
recently [3]. The original project evolved a lot during this period and we were joined
by N. Magalhães to extend the first results on model selection to linear estimator
selection, this work is still in progress [17]. With N. Magalhães and P. Reynaud-
Bouret, we already studied the optimal selection and minimal penalties for linear
estimators [4].
Model selection was also central in my research during my Post-doct in São-Paulo
where I studied discrete random fields with D. Y. Takahashi, a work that led to the
articles [6, 9]. Our main motivation came from neuroscience where discrete random
fields are used to represent brain activity. I continued working on problems related
to neuroscience in Nice, particularly with A. Muzy and F. Grammont with whom I
wrote a paper recently [16].
In São-Paulo, I also met A. Garivier and started to work with him on context tree
estimation [18], which was natural since it was an important topic of research of my
advisor there, A. Galves. In particular, I also worked on context trees, but on a
probabilistic problem of perfect simulation with A. Galves’ students S. Gallo and D.
Y. Takahashi [7]. The idea of the paper [18] was to adapt the prediction approach
from model selection theory to context tree estimation. Unfortunately, we did not
publish this preprint and I won’t present it in these notes.
Right after I got contracted by the CNRS in 2011 and before I even came to Nice,
I was invited in IMPA in Rio de Janeiro by R. I. Oliveira. We started to work on
subgaussian estimators and wrote a first paper [19] that wasn’t published. I will
only briefly discuss the material of this paper, mostly to motivate the new article
[1]. This new paper deals with the problem of subgaussian estimation, it presents
some estimators that strongly outperform the empirical mean when the distribution
has heavy tails. It is interesting to notice that good subgaussian estimators of the
expectation of a real-valued random variable are sufficient to build very general
estimator-selection procedures. The problem of estimator selection in its general
form was introduced by Y. Baraud [Bar11], I had the opportunity to write a short
review on estimator selection for the Journées MAS 2014 in Toulouse, [5].
In Nice, and even already from Rio, I started to work with M. Fromont and P.
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Reynaud-Bouret on aggregated tests. We discussed the problem with my former
PhD advisor B. Laurent with whom we wrote a first paper [8] extending some results
they recently had on two sample tests in a Poisson framework [FLRB11, FLRB13]
to density estimation and some regression frameworks. This original paper led us
to interesting questions on the links between aggregated tests and multiple testing.
We started to investigate these links in the article [2] and we will hopefully continue
in the following years.
Finally, still in Nice, I also had the opportunity to work with two colleagues R.
Chetrite and R. Diel on the Bradley-Terry model. Our original motivations came
from statistical questions as the estimation of the strength of the players, but we
finally came up with nice probabilistic results on this models in random environment,
when the strength are i.i.d. distributed [15]. It turns out that the probabilistic tools
required are common with those I used to solve many model selection models, like
concentration inequalities and control of the expectation of suprema of empirical
processes.
These notes don’t give the details of all the results I had, but hopefully provide
some perspectives on my main topics of research. To keep the presentation as clear
as possible, many mathematical details have been left appart and most results are
presented in an informal way in simple examples rather than in their full generality.
Rigorous results with many discussions and examples can be found in the articles,
precise references are given in the notes. I also changed several notations of the
original papers to keep a coherent presentation in the manuscript.
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Chapter 1

Estimation by selection of estimators

This first chapter starts with a presentation of model selection theory of Barron,
Birgé and Massart [BBM99, BM97, BM01] in the least-squares density estimation
framework. We also refer to Massart’s book [Mas07] for an overview.
Section 1.1.1 fixes notation, Section 1.1.2 presents the basic ideas to derive asymp-
totically optimal inequalities and Section 1.1.3 a simple strategy to perform selection
among large collections of models where oracle inequalities cannot be achieved. My
goal is to provide some guidelines in simple examples that may be useful to un-
derstand the following sections. I also stress the central role of concentration of
measure in model selection and show that the most elementary concentration tools
are sufficient to perform model selection in rich collections of models. The reader
familiar with model selection can have a quick look at Section 1.1.1 and jump to
Section 1.2 where I start to present my own results.
I present in Section 1.2 my results on cross-validation [3, 17] and in Section 1.3
the results on linear estimator selection [4, 17]. I conclude in Section 1.4 by some
applications of model selection in statistical physics models for neuroscience [6, 9].

1.1 Model selection for least-squares density estimation

1.1.1 Position of the problem

Let X be a random variable with distribution P on a measurable space (X,X , µ).
Assume P is absolutely continuous with respect to (w.r.t.) µ and denote by f
its density. We want to estimate f based on the observation of independent and
identically distributed (i.i.d.) copies X1, . . . , Xn of X. The performance of any
estimator f̂ is measured by the quadratic risk Rf (f̂) = E‖f− f̂‖2, where ‖.‖ denotes
the usual L2(µ)-norm. For any probability measure Q and any real-valued function
g ∈ L1(Q), let Qg =

∫
gdQ and let Pn be the empirical measure based on the

observations, that is Pn = 1
n

∑n
i=1 δXi . The loss ‖f − f̂‖2 of f̂ satisfies

‖f − f̂‖2 − ‖f‖2 = ‖f̂‖2 − 2P f̂ = Pγ(f̂) ,

where, for any g ∈ L2(µ) and any x ∈ X, γ(g, x) = ‖g‖2 − 2g(x) denotes the least-
squares contrast. We are given a (finite, but possibly growing with n) collection of
finite-dimensional linear subspaces (Sm)m∈Mn of L2(µ) (the models), which are used

11



12 CHAPTER 1. ESTIMATION BY SELECTION OF ESTIMATORS

to produce a collection of estimators

∀m ∈Mn, f̂m = arg min
g∈Sm

Pnγ(g) .

These estimators are easy to compute, given an orthonormal basis (ϕi)i∈Im of Sm,
we have

f̂m =
∑
i∈Im

(Pnϕi )ϕi . (1.1)

They are usually called projection estimators to emphasize that they actually esti-
mate the orthogonal projection of f onto Sm

fm =
∑
i∈Im

(Pϕi )ϕi .

In this presentation, we shall focus on spaces of histograms: let Am be a finite
partition of measurable subsets of X. The histogram space Sm associated to Am is
the linear span of the functions (1A)A∈Am . The projection estimator on Sm is

f̂m =
∑
A∈Am

Pn1A
µ(A)

1A .

To illustrate our result, we specify three families of histograms on X = [0, 1] endowed
with its Borel σ-algebra and the Lebesgue measure µ.
The collection of regular histograms (Sd)d∈Mr

n
is the collection of histograms based

on the regular partitions (Ard)d∈Mr
n
, whereMr

n = {1, . . . , n} and, for all d ∈Mr
n,

Ard =

{[
k

d
,
k + 1

d

)
k=0,...,d−2

,

[
1− 1

d
, 1

]}
.

For d ∈Mr
n, the histogram associated to the partition Ard is therefore

f̂d = d
∑
A∈Ard

(Pn1A)1A .

The 1-breakpoint collection (Sm)m∈M1b
n

is the collection of histograms associated to
the partitions (Am)m∈M1b

n
, whereM1b

n is the collection of all triplets m = (c, d1, d2)
with c ∈ {1/n, . . . , 1− 1/n} and d1 ∈ [1, nc] ∩ N, d2 ∈ [1, n(1 − c)] ∩ N and for
any m ∈M1b

n , Am is the partition of [0, 1] with bin sizes equal to c/d1 on [0, c] and
(1−c)/d2 on (c, 1]. If there exist integers d ≤ n and k ≤ d such that c = k/d, d1 = k
and d2 = d− k, Am is the regular partition Ard.
Finally, let φ = 1[0,1] and ψ = 1[0,1/2] − 1(1/2,1] and, for any j ≥ 0 and k ∈ Z, let
ψj,k = 2j/2ψ(2j.− k). The collection (φ, (ψj,k)j∈N,k∈{0,...,2j−1}) defines the Haar basis
and the last collection of histograms of interest is the collection (Sm)m∈MH

n
, where,

denoting by

Mn =

{
(j, k), s.t. j ∈

{
0, . . . ,

⌊
log2

(
n

log n

)⌋}
, k ∈

{
0, . . . , 2j − 1

}}
,

MH
n is the collection of all subsets m ⊂ Mn and for any m ∈ MH

n , Sm is the linear
span of φ and all (ψj,k)(j,k)∈m.
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The main task in model selection is to select m̂ ∈Mn such that the risk of the final
estimator f̂m̂ is as small as possible. More precisely, the goal is to prove that, for
some constant C ≥ 1,

Rf (f̂m̂) ≤ C inf
m∈Mn

Rf (f̂m) . (1.2)

This inequality is called an oracle inequality because the risk of the estimator f̂m̂
is comparable to the one that an “oracle", who knows in advance the risks of all
(f̂m)m∈Mn , would have chosen to achieve infm∈Mn Rf (f̂m). We will also sometimes
try to improve this inequality and prove that, for some εn → 0,

Rf (f̂m̂) ≤ (1 + εn) inf
m∈Mn

Rf (f̂m) + ∆(εn,Mn) . (1.3)

Inequality (1.2) is actually better than an oracle inequality when the remainder term
∆(εn,Mn) = o(infm∈Mn Rf (f̂m)), in this case, the oracle inequality is called asymp-
totically optimal. The term “oracle" is due to Donoho and Johnston [DJ94] and is
now commonly accepted in various contexts including model selection [Mas07], se-
lection of Parzen’s estimators [GL11], aggregation [RT07] or thresholding [DJKP96,
GN09].

1.1.2 Selection of regular histograms by deterministic penalization

To perform the selection of m̂, a natural idea is to estimate the loss Pγ(f̂m) by a
data-driven criterion Cn(m) and choose

m̂ = arg min
m∈Mn

Cn(m) .

The basic estimator Pnγ(f̂m) for Pγ(f̂m) has poor performances in general since
the same data are used to build the estimator f̂m and to estimate its loss. This
is why the selection step usually requires some refined statistical approach such as
penalization [Aka70, Mal73], resampling [Efr83] or cross-validation [Rud82]. In the
remaining part of this chapter, we will present these different approaches.
Let us illustrate the solution provided by penalization in an elementary example. In
least-squares density estimation, for regular histograms, the estimator Pnγ(f̂m) of
the ideal criterion Cid(m) = Pγ(f̂m) satisfies

‖f‖2 + EPnγ(f̂d) = ‖f‖2 − ‖fd‖2 − d− ‖fd‖2

n
= ‖f − fd‖2 − d− ‖fd‖2

n
, (1.4)

where fd is the expectation of f̂d :

fd = d
∑
A∈Ard

(P1A)1A .

Neglecting the term ‖fd‖2 /n ≤ ‖f‖2/n = O(1/n) in (1.4), both ‖f − fd‖2 and −d/n
are non-increasing functions of d so the minimizer of the expectation of the empirical
loss Pnγ(f̂d) with respect to d is the largest value of d = n. Since

∀d ∈Mr
n, E‖f̂d − f‖2 = ‖fd − f‖2 +

d

n
− ‖fd‖

2

n
,
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for d = n, one has E‖f̂d − f‖2 ≥ 1 + O(1/n). If some estimator in the collection
(f̂d)d∈Mr

n
is consistent, this proves that minimizing the empirical loss does not yield

to oracle inequalities.
On the other hand, the same computations show that

E
[
Pnγ(f̂d) + 2

d

n

]
= E‖f̂d − f‖2 − ‖f‖2 +

‖fd‖2

n
.

Hence, the penalized empirical loss

Cpen(d) = Pnγ(f̂d) + pen(d), with pen(d) = 2
d

n
,

is essentially an unbiased estimator of the loss. To prove that a minimizer of Cpen

satisfies an oracle inequality, we prove that, for any d ∈ Mr
n, Pnγ(f̂d) + pen(d) is

close to Pγ(f̂d). This is where we use concentration inequalities. These provide, for
each d and n, functions ∆d,n such that,

∀x > 0, P
(
|Pnγ(f̂d) + pen(d)− Pγ(f̂d)| ≤ ∆d,n(x)

)
≥ 1− e−x .

The uniform control over all d ∈ Mr
n is obtained using a union bound. At the end,

one can prove that there exists a constant C which is independent of n and d such
that

E

[
sup
d∈Mr

n

(∣∣∣(Pn − P )γ(f̂d) + pen(d)
∣∣∣−∆d,n(log n)

)
+

]
≤ C

n
, (1.5)

where the log n term comes from log |Mr
n|. More precisely, (1.5) is obtained using

two concentration inequalities, the first is a weak version of Bernstein’s inequality
which says that, for any bounded function g,

∀x > 0, P

(
|(Pn − P )g| >

√
2Pg2x

n
+
‖g‖∞ x

3n

)
≤ 2e−x . (1.6)

The second one is a concentration inequality for totally degenerate U -statistics de-
rived from [HRB03]. The reason is that all our quantities of interest can be decom-
posed as a sum of a centered empirical mean and a totally degenerate U -statistics
of order 2. For example, one can show that, for regular histograms

Pnγ(f̂d) + pen(d)− Pγ(f̂d)

=

(
1− 1

n

)
(Pn − P )γ(fd) +

d

n2

∑
1≤i 6=j≤n

∑
A∈Ard

(1Xi∈A − P1A)(1Xj∈A − P1A) .

(1.7)

Using these concentration inequalities, we show that (Pn − P )γ(f̂d) + pen(d) is
bounded from above by ∆d,n(x) = C

n
(
√
dx + dx

n
). Now, using (1.5) and elementary

algebraic computations, we get that the minimizer d̂ of Cpen(d) satisfies, for any
ε ∈ (0, 1),

(1− ε)E‖f − f̂d̂‖
2 ≤ (1 + ε) inf

d∈Mr
n

{
E‖f − f̂d‖2 +

1

ε3
∆d,n(log n)

}
+
C

n
. (1.8)
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This is an oracle inequality, see (1.2), if infd∈Mr
n
E‖f − f̂d‖2 ≥ log(n)/n and an

asymptotically optimal inequality, see (1.3), if infd∈Mr
n
E‖f − f̂d‖2 � log(n)/n.

Let us now analyse the previous sketch of proof to emphasize its main features.

• First, the penalty term pen(m) should be a data-driven quantity satisfying

pen(m) ≥ E
[

(P − Pn)γ(f̂m)
]
,

to get an oracle inequality. Moreover, this upper bound should be sharp for the
inequality to be asymptotically optimal.

• Second, the collection Mn should not be too rich for the remainder term
(∆d,n(log(|Mr

n|)) ≈
√
d(log n)/n in the example) to be bounded from above,

or even negligible compared to the risk (‖f‖2 +E
[
Pγ(f̂d)

]
≥ d/n in the exam-

ple) for a reasonable range of m ∈ Mn. Typically, this holds when log(|Mn|)
is smaller than a power of log n, which is the case for the collectionsMr

n and
M1d

n but not for the collectionMH
n which should be handled using a different

strategy that I will sketch in the following subsection.

1.1.3 Selection of a subset of the Haar basis

As the collection MH
n is very large, log2(|MH

n |) ≈ n
logn

, one cannot use the rough
union bound among all the models of the previous section. Recall that we want to
compute a penalty term pen(m) such that the estimator

f̂m̂, where m̂ ∈ arg min
m∈MH

n

{
Pnγ(f̂m) + pen(m)

}
(1.9)

satisfies (1.2). Barron, Birgé and Massart [BBM99, BM97, BM01] show that this is
not possible and that there is always a logarithmic loss. Therefore, the goal is to
prove that there exists a constant C > 0 such that

Rf (f̂m̂) ≤ C(log n) inf
m∈Mn

Rf (f̂m) . (1.10)

To achieve (1.10), we look for penalties of the form pen(m) = λ2|m| for some λ > 0.
The first reason is that the minimization problem defining m̂, a priori intractable,
is actually easily solved here. Actually,

∀m ∈MH
n , Pnγ(f̂m) + λ2|m| =

∑
(j,k)∈m

(λ2 − (Pnψj,k)
2) ,

thus, the minimizer is the set m̂ = {(j, k), s.t. |Pnψj,k| > λ} and the selected esti-
mator is the hard thresholded estimator of [DJKP96]

f̂m̂ = 1 +
∑

(j,k)∈Mn

(Pnψj,k1|Pnψj,k|>λ)ψj,k . (1.11)

Moreover, by definition of m̂,

∀m ∈MH
n , Pnγ(f̂m̂) + λ2|m̂| ≤ Pnγ(f̂m) + λ2|m| ,
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therefore,

Pγ(f̂m̂) ≤ Pγ(f̂m) +
(

(Pn − P )γ(f̂m) + λ2|m|
)

+
(

(P − Pn)γ(f̂m̂)− λ2|m̂|
)
,

(1.12)

Now, we decompose,

(P − Pn)γ(f̂m̂) = (P − Pn)(γ(f̂m̂)− γ(fm̂)) + (P − Pn)γ(fm̂)

= 2
∑

(j,k)∈m̂

((Pn − P )ψj,k)
2 + (P − Pn)γ(fm̂) . (1.13)

The trick to handle these large collections is to use a union bound to control all the
differences |(Pn−P )ψj,k| for all (j, k) in Mn instead of a union bound for all models
MH

n as in the previous subsection because the cardinality ofMn is much smaller. As
‖ψj,k‖∞ ≤ 2j/2 ≤

√
n

logn
and Eψ2

j,k = 2jE1[k/2j ,(k+1)/2j ] ≤ ‖fMn‖∞, inequality (1.6)

gives, for any x > 0, P (Ω(x)) ≥ 1− e−x, where, for some absolute constant C > 0,

Ω(x) =

{
∀(j, k) ∈Mn, |(Pn − P )ψj,k| ≤ C

‖fMn‖∞ + x+
√

log 2n√
n

}
.

Suppose that some (deterministic) upper bound Ln on ‖fMn‖∞ is available to the
statistician and define `(x) =

√
2C(Ln +

√
log 2n + x). It follows from (1.12) and

(1.13) that, if the threshold λ = `(x)/
√
n and the penalty pen(m) = λ2|m|, the

estimator (1.9) satisfies, on Ω(x),

∀m ∈MH
n , ‖f̂m̂ − f‖2 ≤ ‖f̂m − f‖2 + `(x)2 |m|

n
≤ ‖fm − f‖2 + 2`(x)2 |m|

n
.

Integrating this inequality gives finally that, when, ‖fMn‖∞ ≤ Ln and the threshold
λ = C(Ln +

√
log n)/

√
n, the hard thresholded estimator (1.11) satisfies

Rf (f̂m̂) ≤ C(L2
n + log n) inf

m∈Mn

Rf (f̂m) . (1.14)

Interestingly, the key ingredients to perform this analysis are quite simple.

• We only had to estimate the means Pψj,k of real-valued random variables by
the empirical means Pnψj,k.

• Then, to obtain the pseudo oracle bound (1.14), we only have to bound above
the deviations of these estimators which derives via Berstein’s inequality from
a control of Pψ2

j,k by a constant and of its infinite norm ‖ψj,k‖∞ by
√
n/ log n.

However, as many procedures for least-squares density estimation, see [Bir14],
this one depends on an upper bound Ln of ‖f‖∞ that is in general not available
to the statistician.

1.2 Cross-validation estimators for model selection

1.2.1 Random procedures for model selection

The selection among regular histograms is easily performed using the penalty pen(d) =
2d/n. However, when dealing with the 1-breakpoint histograms m = (c, d1, d2), one
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can check that

1

2
E
[

(Pn − P )γ(f̂m)
]

=
F (c)

c

d1

n
+

1− F (c)

1− c
d2

n
− ‖fm‖

2

n
,

where F denotes the c.d.f. of P . This expectation cannot be sharply bounded
above by deterministic penalties in general, in fact, it is only possible when the 1-
breakpoint histogram is close to a regular histogram, that is, when d1/c ≈ d2/(1−c).
However, these histograms are preferred to regular histograms when the regularity
of f is assumed to be very different on an interval [0, c] than on [c, 1] and an oracle
has different bin sizes on [0, c] than on [c, 1], that is d1/c and d2/(1 − c) are not
comparable. In that case, the obvious upper bound

d1

cn
+

d2

(1− c)n

leads to oracle inequalities, using similar arguments as those of the previous section,
but they are not asymptotically optimal. On the other hand, random strategies
can be used to obtain sharper bounds. In this example, the c.d.f. F can be esti-
mated by the empirical c.d.f. F̂ , the difference can be uniformly bounded above
by the DKW inequality [Mas90] and we would obtain an asymptotically optimal
oracle inequality. But the problem at hand is also sufficiently simple to study more
general random procedures that are widely used in a variety of practical problems
without strong non-asymptotic guarantees. For example, this is the case of re-
sampling estimators of the penalty suggested by [Efr83, Arl09]. Given a vector
(W1, . . . ,Wn) of non-negative random variables independent of the observation such
that

∑n
i=1Wi = n, one defines the resampling empirical process for any function

g by PW
n g = 1

n

∑n
i=1Wig(Xi). Efron’s resampling heuristic [Efr79] states that the

distribution of any functional F (Pn, P ) should be close to the one of its resampling
counterpart F (PW

n , Pn) conditionally on the data. In particular,

E
[

(P − Pn)γ(f̂m)
]
≈ penW (m) = CWEW

[
(Pn − PW

n )γ(f̂Wm )
]
, (1.15)

where EW denotes the expectation conditionally on the data and f̂Wm is the resam-
pling estimator of fm, f̂Wm =

∑
i∈Im(PW

n ϕi)ϕi and CW is a constant. These penalties
have been analyzed in my PhD article [10] under the assumption that the weights
W are exchangeables, meaning that their distribution is invariant under any per-
mutation of the coordinates. In [3, Lemma 1], we show that resampling penalties
based on an exchangeable resampling vector are in fact particular cases of V -fold
cross-validation penalties. Therefore, I will not discuss the performances of resam-
pling penalties here and rather present cross-validation procedures before giving the
results.

1.2.2 Cross-validation procedures

Cross-validation is one of the most classical methods of model selection. It was
introduced in the 70’s [All74, Gey76, Sto74] and extended to density estimation
independently by Rudemo [Rud82] and Bowman [Bow84]. These methods require
few assumptions on the unknown density f in general [Loa99]. The asymptotic
properties of cross-validation estimators are well known, see for example [Hal83,
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HM87, ST87, Sto84] for proofs of its consistency, its asymptotic normality and its
efficiency. The original cross-validation schemes have then been extended to improve
practical performances, among others, let us mention for example “biased" cross-
validation [ST87], “corrected" cross-validation of Burman [Bur89], “trimmed" cross-
validation [FK92], “modified" cross-validation [Stu92] or indirect cross-validation
[SHS10]. See also the survey [AC10] for a recent overview on cross-validation for
model selection.
The validation principle in statistics is an alternative approach to resampling for
estimating quantities like F (Pn, P ) for some known functionals F , typically the risk
or the loss Pγ(f̂m). The idea is to split the data in two pieces, a training set (Xi)i∈T
and a validation set (Xi)i∈T c , where both T ⊂ {1, . . . , n} and T c = {1, . . . , n} \ T
are non-empty. These sets are used to build the training empirical process PTg =
1
|T |
∑

i∈T g(Xi) and the validation empirical process PT cg = 1
|T c|
∑

i∈T c g(Xi) which
are used to estimate F (Pn, P ) by the hold-out estimator

F̂ ho
T = F (PT , PT c) .

In practice, hold-out estimators are dependent on the choice of T and to reduce this
variability, the cross-validation idea is to use a collection of training sets T ∈ E and
compute the cross-validation estimator

F̂ cv
E =

1

|E|
∑
T∈E

F̂ ho
T .

Hereafter, I will call cross-validation scheme a collection E of training sets. In our
analysis, we discuss the performances of the following cross-validation schemes.

1. The trivial collection Eho = {T }, the corresponding cross-validation estimator
F̂ cv
Eho = F̂ ho

T is the hold-out estimator.

2. The complete collection Ep of all subsets T ⊂ {1, . . . , n} with cardinality n−p ∈
{1, . . . , n− 1}. The corresponding cross-validation estimator is known as the
leave-p-out estimator.

3. Let B ∈ N\{0} and let T1, . . . , TB denote B subsets of Ep chosen independently
and uniformly, independently of the data. The collection Emcp,B = {T1, . . . , TB }
is our third collection of interest, the corresponding cross-validation procedures
are called Monte-Carlo cross-validation [PC84].

4. Let V be a divisor of n and let T c1 , . . . , T cV denote a deterministic partition
of {1, . . . , n} of sets of cardinality n/V . The collection EvfV = {T1, . . . , TV }
provides the V -fold cross-validation estimators [BFOS84].

A common heuristic in cross-validation is that, the larger E , the better the cross-
validation estimator should be, but the harder it is to compute in practice. Therefore,
the following questions on the comparison of cross-validation schemes naturally arise.

• Can we compare performances of estimators built with different cross-validation
schemes? For example, can one prove that leave-p-out estimators are better
than hold-out estimators built with one T with cardinality n − p? Can we
compare these with intermediate estimators like Monte-Carlo cross-validation
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estimators, which give hold-out when B = 1 and leave-p-out when B →∞? Is
it better to perform deterministic splits as in V -fold cross-validation or random
ones like Monte-Carlo with p = n/V and B = V ?

• Is there a cross-validation scheme with a reasonable cardinality ensuring per-
formances close to the optimal? For example, does V -fold cross-validation
performs as well as leave-p-out for a reasonable value of V , like V = 5 or
V = 10?

For least-squares density estimation, there are two natural functionals one may es-
timate to build a model selection criterion. The first and most classical one is the
loss itself Pγ(f̂m). The corresponding cross-validation estimators are called cross-
validation criteria and are defined by

CcvE (m) =
1

|E|
∑
T∈E

PT cγ(f̂Tm), where f̂Tm =
∑
i∈Im

(PTϕi)ϕi . (1.16)

The second one is the ideal penalty as defined by Arlot [Arl09] which is equal to

penid(m) = (P − Pn)γ(f̂m) .

It is called ideal because the empirical loss penalized by the ideal penalty is the
ideal criterion Cid(m) = Pγ(f̂m). The associated cross-validation estimators are
called cross-validation penalties

penE(m) =
1

|E|
∑
T∈E

(PT − PT c)γ(f̂Tm) .

These are used to define the cross-validation penalized criteria, defined for a constant
C > 0 by

Ccvpen,E,C(m) = Pnγ(f̂m) + CpenE(m) .

In any case, we study the performance of the estimator

f̂m̂ where m̂ ∈ arg min
m∈Mn

C(m) . (1.17)

Notice that cross-validation is only used to select the estimators, those are built
using all the data-set.
What makes a general study of cross-validation schemes difficult is usually the de-
pendence between hold-out estimators F̂ ho

T for different T . Least-squares density
estimation is a particularly nice framework because, as the ideal penalty for regular-
histograms selection (1.7), all cross-validation criteria and penalization can be de-
composed into sums of centered empirical means and totally degenerate U -statistics
of order 2. This is central in our analysis. In particular, oracle inequalities derive
from the same concentration inequalities as those of the preceding section.

1.2.3 Oracle properties of cross-validation selectors

Our first series of results on cross-validation algorithms concern V -fold penalization.
The main reason is that several cross-validation schemes lead to V -fold penalized
criteria Ccv

pen,EvfV ,C
, for different values of V and C. In [3, Lemma 1], we prove that all
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leave p-out penalties penEp and all resampling penalties penW based on exchangeable
resampling weights W (see (1.15) and [Arl09] for a general definition) are n-fold
penalties penEvfn multiplied by some constant C and that both leave-p-out criteria
CEp and V -fold criteria CEvfV are particular instances of Ccv

pen,EvfV ,C
. The only differences

between these criteria are the parameters V and C to use. Therefore, by studying
general V -fold penalized criteria Ccv

pen,EvfV ,C
for all values of C and V , we study a

much broader class of cross-validation and resampling procedures.
We prove in [3, Theorem 5] an oracle inequality for the estimator (1.17) with m̂
minimizing Ccv

pen,EvfV ,C
, that is valid for any value of V and any constant C > (V −

1)/2 in front of the penalty. More precisely, we show that, under some classical
assumptions on the collection of models (as for example those of [BBM99]), for any
ε ∈ (0, 1),

1− δ− − ε
1 + δ+ + ε

Rf (f̂m̂) ≤ inf
m∈Mn

Rf (f̂m) + ∆ (ε, f, log(|Mn|)) , (1.18)

where δ = 2( C
V−1
− 1), δ− = (−δ) ∨ 0 and δ+ = δ ∨ 0. The term δ in this inequality

measures the bias of the criterion. More precisely, recall that Cid(m) = Pγ(f̂m). The
bias of the criterion is the difference ECcv

pen,EvfV ,C
(m)−ECid(m) and one can show that

ECcv
pen,EvfV ,C

(m)− ECid(m) = δE
∥∥∥fm − f̂m∥∥∥2

. (1.19)

The inequality (1.18) is only interesting when C > (V −1)/2 and it is then an oracle
inequality if ε is small enough. Moreover, it yields to an asymptotically optimal
oracle inequality if C = V − 1 and ∆ (ε, f, log(|Mn|)) = o

(
infm∈Mn Rf (f̂m)

)
.

These results are coherent with minimal penalty results (see Section 1.3.2 or [10,
Theorem 2.2]).
The oracle inequality (1.18) is new for the following reasons. First, it is, to our knowl-
edge, the first non-asymptotic oracle inequality proved for V -fold cross-validation
penalization in least-squares density estimation. Second, it is, in any framework,
the first oracle inequality valid for V -fold methods that holds for any value of V and
in particular, that provides an asymptotically optimal oracle inequality without loss
when V (i.e. the number of splits) increases. Previous bounds [Arl08] were obtained
by concentration of the hold-out estimators and a union bound. They were thus
valid only for small V and were deteriorating with V .
The oracle inequality is asymptotically optimal only when the bias is asymptotically
null, which is coherent with the following comments made on cross-validation in other
frameworks. First, corrected V -fold cross-validation criteria, which are unbiased,
yield asymptotically optimal oracle inequalities, whatever the value of V . Second,
V -fold criteria CEvfV (m), which are equal to ECcv

pen,EvfV ,C
(m) with C = V − 1/2 satisfy

δ = 2( C
V−1
− 1) = 1

V−1
and are therefore only asymptotically optimal when V →∞.

The drawback of this nice performance is that oracle bounds cannot be used to
distinguish criteria with the same bias based on different values of V , and more
generally between different cross-validation schemes. This was expected, since an
oracle bound is always only an upper bound on the performance of a scheme; besides,
the bias of a method is the only parameter that matters at first order in an oracle
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inequality and the bias (1.19) of Ccv
pen,EvfV ,C

can always be chosen equal to 0 for any
V using C = V − 1.

1.2.4 Comparing model selection criteria : a heuristic with application
to cross-validation schemes

If all V -fold cross-validation methods have the same performances, one should choose
V = 2 to minimize the computation time of the estimators. However, one finds in
the literature, see for example [BS92, HTF09] the advice that choosing V = 5 or
V = 10 is much better than V = 2 from a practical point of view. To understand
why, we present in [3, Section 4] a heuristic to differentiate two criteria of model
selection. Let m∗ ∈ arg minm∈Mn Rf (m) (the oracle model) and let C1 and C2 denote
two criteria, that is data-driven functions Mn → R. Assume that both criteria
have the same bias, i.e. that there exists a “constant" A ∈ R (independent of m),
satisfying EC1(m) = EC2(m) + A for any m ∈ Mn. For any ε > 0, denote by
M∗

ε = {m ∈Mn, s.t. Rf (m) ≤ (1 + ε)Rf (m
∗)}. The heuristic goes as follows : C1

is better than C2 if, for any “small" ε > 0,

P (m̂1 ∈M∗
ε ) > P (m̂2 ∈M∗

ε ) ,

where m̂i = arg minm∈Mn Ci(m). Now

P (m̂i ∈M∗
ε ) = P

(
∀m /∈M∗

ε , inf
m′∈M∗ε

Ci(m′) < Ci(m)

)
≈ P (∀m /∈M∗

ε , Ci(m∗) < Ci(m))

Using a Gaussian approximation

Ci(m)− Ci(m∗) ≈ E [Ci(m)− Ci(m∗) ] +Nm

√
Var [Ci(m)− Ci(m∗) ]

for some Nm ∼ N (0, 1), we get

P (m̂i ∈M∗
ε ) ≈ P

(
∀m /∈M∗

ε , Nm > − E [Ci(m)− Ci(m∗) ]√
Var [Ci(m)− Ci(m∗) ]

)
. (1.20)

Under our assumption on the bias, ∀m, the numerators E [Ci(m)− Ci(m∗) ] do not
depend on i ∈ {1, 2}. Moreover, if this bias is “small", E [Ci(m)− Ci(m∗) ] is non
negative for any m /∈M∗

ε . Therefore, the proxy (1.20) for P (m̂i ∈M∗
ε ) is larger for

i = 1 than for i = 2 if

∀m /∈M∗
ε , Var [C1(m)− C1(m∗) ] < Var [C2(m)− C2(m∗) ] . (HCC)

V -fold penalized criteria satisfy

ECcv
pen,EvfV ,C

(m) = ‖fm − f‖2 +

(
2C

V − 1
− 1

)
E‖fm − f̂m‖2 + A .

We use our heuristic to compare V -fold criteria for different values of V . For any
V , choose C = V − 1, so all criteria are unbiased. We prove in [3, Theorem 6]
that, when Mn is the collection of regular histograms with bin sizes d = 2`, for
` = 1, . . . , blog2 nc, the variances of the increments is proportional to 1 + 4/(V − 1).
This result supports therefore the following remarks made by practical users of V -
fold methods :
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1. when the bias (1.19) is fixed (and small), enlarging V improves the model
selection performances of V -fold procedures,

2. this improvement is larger when V grows from 2 to 5 or 10 than from 10 to n.

Moreover, V appears as a first order term in the asymptotic development of the
variance of the increment Ccv

pen,EvfV ,C
(m) − Ccv

pen,EvfV ,C
(m∗) while it is only involved in

smaller order terms in the variance of the criteria themselves. Previous articles only
focused on the variances of the criteria [Bur89, BG05, Cel08, Cel14, CR08] and
could not therefore explain as well the practical differences. Our results confirm the
common advice that choosing V = 5 or 10 will, for a reasonable computation time,
yield to performances close to the optimal. Let us nevertheless recall to conclude this
paragraph that choosing a larger V only improves the model selection performance
when the bias (1.19) is fixed and small. For V -fold cross-validation criteria Ccv

EvfV
,

choosing a larger V also reduces the bias so, even if the asymptotic performances of
such criteria are always better, they may be much worse for finite n, see for example
[Cel14, LY11].

1.2.5 Results for general cross-validation criteria

Our second series of results covers more general cross-validation criteria, in particular
Monte-Carlo cross-validation. Actually, any E among Ehop , Ep, Emcp,B and EvfV satisfies

∃p ∈ {1, . . . , n− 1} s.t. E ⊂ Ep . (SC)

E is independent of X1, . . . , Xn . (Ind)

For any criterion satisfying (SC) and (Ind), we prove in [3, Theorem 9] an oracle
inequality for the estimator (1.17). We show that, for all p ∈ {1, . . . , n− 1}, for
Ap = n

n−p > 1, for any E ⊂ Ep,

∀m ∈M, ECE(m) = ‖f − fm‖2 + ApE‖fm − f̂m‖2 + A .

This means that all criteria CcvE with E ⊂ Ep have the same bias and therefore, we
show in [3, Theorem 9] that the selected m̂E satisfies, for δp = Ap − 1 > 0

∀ε > 0, Rf (m̂E) ≤ (1 + δp + ε) inf
m∈M

Rf (m) + ∆(E , ε) . (1.21)

The leading function 1 + δp + ε is common to all schemes, the difference is that the
remainder term ∆(E , ε) can be written

∆(E , ε) =

(
1 + πE

n

p

)
∆(ε), with πE = max

i∈{1,...,n}

1

|E|
∑
T∈E

1i∈T .

It is interesting to notice that, for V -fold EvfV with V = n/p and leave-p-out Ep
schemes, πE = p

n
, so the upper bound (1.21) on ∆(E , ε) has the smallest order

possible for these schemes. The worst case is achieved by hold-out criteria where
πE = 1, leading to a loss of order n/p in the remainder term of (1.21). Even if it is
only an upper bound, it is coherent with the idea that multiplying the number of
splits improves the stability of the resulting criterion. Finally, for Monte-Carlo cross-
validation, πE concentrates around p/n with a non-increasing remainder term (as a
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function of B), bounded by 1 and behaving as log n/B for large B. This is coherent
with the fact that Monte-Carlo cross-validation corresponds to hold-out when B = 1
and to leave-p-out when B → ∞. More precisely, this shows that the remaining
term in (1.21) has the smallest order possible once B ≥ n log n/p. However, when
B = n/p, the remainder term is larger than the one obtained for V = (n/p)-fold
procedure (which also uses B splits) by a logarithmic factor, suggesting that it might
be preferable to perform B well-chosen deterministic splits than random ones. To
investigate further the comparisons between these criteria, we also compute in [3,
Theorem 10] the variances of the increments in our general cross-validation scheme.
We prove that these variances are always convex combinations of the variance of
hold-out criteria (HO), which is the largest one, and the leave-p-out (LPO), which is
the smallest one. For Monte-Carlo cross-validation (MC), the result can informally
be stated as

Var(MC) =
1

B
Var(HO) +

(
1− 1

B

)
Var(LPO) .

This result, which is valid more generally for Monte-Carlo cross-validation estima-
tors, confirms the remarks done after the oracle inequality. Moreover, when B = V ,
it allows to compare more precisely Monte-Carlo and V -fold cross-validation, show-
ing that the variance of V -fold is the one of Monte-Carlo divided by a factor that is
as n→∞ (depending on V ) between 2 and 3. Again, this confirms the impression
that performing deterministic splitting is preferable, but the improvement is prob-
ably much smaller than a log factor. The superiority of V -fold over Monte-Carlo
cross-validation was already suggested by the variance computations of Burman
[Bur89].
From a technical point of view, the study of cross-validation is possible in density
estimation thanks to the closed formula we get for all penalties and criteria. The
oracle inequalities are proved using the approach introduced in Section 1.1.2 and
rely on concentration inequalities for the empirical mean and U -statistics of order 2.
Closed formulas are also central to compute variances. General lemmas are provided
to compute covariances of sums of U -statistics and empirical means, they are, up to
our knowledge, all new. Finally, the heuristic, based on Gaussian approximations, is
new but the increments of criteria already appeared in the relative bounds of [Cat07]
which can be used for model selection, see [Aud04].

1.3 Linear estimator selection

This section presents some extensions of model selection theory to linear estimator
selection in least-squares density estimation. Given a function m : X2 → R, the
linear estimator of f associated to m is defined by

∀x ∈ X, f̂m(x) =
1

n

n∑
k=1

m(Xi, x) .

Linear estimators have been introduced in [WB79] under the name delta-sequences
and are referred to as additive estimators in [DL01]. We get interested in these since
several classical density estimators are linear, as shown in the following examples.

Example 1 (Projection estimators). Let S denote a finite-dimensional linear sub-
space of L2(µ) and let (ϕi)i∈I denote an orthonormal basis of S, the projection
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estimators presented in Section 1.1 are defined by

f̂S =
∑
i∈I

(Pnϕi)ϕi ,

they are linear estimators associated to the function mS, where

∀(x, y) ∈ X2, mS(x, y) =
∑
i∈I

ϕi(x)ϕi(y) .

Example 2 (Parzen-Rosenblatt estimators). Let X = R and k : X→ R, h > 0 and
mk,h(x, y) = 1

h
k(x−y

h
). The linear estimator, defined by

∀x ∈ X, f̂k,h(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
is called the Parzen estimator in reference to [Par62], it has been introduced by
Rosenblatt [Ros56]. It is still one of the most famous density estimators. The func-
tion k is called the kernel and h the bandwidth. Among famous kernels, one can
mention here the Gaussian kernel, the Epanechnikov kernel, Wasserman’s kernel,
splines kernels or Pinsker’s kernels and refer to Tsybakov’s book [Tsy09] for defini-
tions.

Example 3 (Weighted sequences). Let (ϕi)i∈N denote an orthonormal family in
L2(µ) and let ω = (ωi)i∈N denote a sequence (of weights) in `2. The weighted esti-
mator

f̂ω =
+∞∑
i=0

ωi(Pnϕi)ϕi ,

is a linear estimator associated to the function

∀(x, y) ∈ X2, mω(x, y) =
+∞∑
i=0

ωiϕi(x)ϕi(y) .

Examples of weighted estimators are projection estimators and Pinsker’s estima-
tors [Pin80]. Pinsker’s estimators have been successfully used in density estimation
in [Efr85, Efr00, Efr05, Gol92, Rig06, RT07], on the Fourier basis with Pinsker’s
weights where they were proved to be sharp minimax on Sobolev Spaces, see Sec-
tion 1.3.4 for details.

Given a collection of linear estimators (f̂m)m∈Mn we want to select one with a least-
squares risk as close as possible to the minimal one. The linear estimator selection
framework is sufficiently rich to cover the problems of model selection studied by
Barron, Birgé and Massart [BBM99, BM97, BM01, Mas07] by example 1, or the
problem of the selection of the bandwith and/or of the kernel for Parzen estimators
by example 2, which has been widely studied both theoretically [DL01, Tsy09, GL11]
and practically [Sil86, WJ95, JMS96]. It also authorizes the competitions between
these methods. However, it does not cover more general estimator selection problems
like the selection of estimators issued from a first phase of selection : thresholded
estimators or Lasso estimators, as does the construction of Baraud [Bar11], or the
choice between large collections of fixed functions as does Birgé [Bir06b].
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1.3.1 Optimal selection

This section presents the results of [4] on asymptotically optimal selection of linear
estimators. Let pen denote some real-valued function defined onMn, our estimator
is defined by f̂m̂, where

m̂ ∈ arg min
m∈Mn

{
Pnγ(f̂m) + pen(m)

}
, (1.22)

Recall that Rf (f̂m) = E‖f̂m − f‖2 denotes the least-squares risk of f̂m. We want to
prove that our estimator satisfies an oracle inequality, which means as before that,
for some sequence εn ≥ 0,

Rf (f̂m̂) ≤ (1 + εn) inf
m∈Mn

Rf (f̂m) + ∆(εn,Mn) .

We prove in [4, Theorem 3.1] that the penalty penopt(m) = 2
n
E [m(X,X) ] yields an

asymptotically optimal oracle inequality, under technical assumptions on the col-
lectionMn. These are satisfied in all our examples when the cardinality ofMn is
asymptotically not larger than the exponential of some power of log n. This penalty
is not always directly computable in practice but can be estimated by its empirical
counterpart 2

n2

∑n
i=1m(Xi, Xi) without affecting its theoretical performances. More-

over, for projection estimators onto regular histogram spaces, mS(x, x) = d for any
x so this optimal penalty coincide with Mallow’s penalty studied in Section 1.1.1 for
the optimal selection of the bin size of a projection estimator on a regular histogram.
For Parzen’s estimators mk,h(x, x) = 1

h
k(0) for any x, so penopt(mk,h) = 2k(0)/(nh)

can also be directly be computed and used for defining m̂.
The paper introduces the new proof of oracle inequalities in least-squares density
estimation that only relies on Bernstein’s concentration inequality for the empirical
mean (see (1.6) and [Mas07] for a proof) and a concentration inequality for totally
degenerate U -statistics of order 2. This inequality was first proved by Giné, Latala
and Zinn in [GLZ99]. Exact constants were obtained in [HRB03], but only for
real-valued random variables. The most general result is now the one of Adamczak
[Ada06], that is valid for U -statistics of any order. We use a version given in Giné
and Nickl’s book [GN15, Theorem 3.4.8]. The asymptotic behavior of the main
quantities involved in our proofs have also recently been studied, for example in
[DO13, MS11].

1.3.2 Minimal penalties

We are also interested in minimal penalties for linear estimator selection. Following
Birgé and Massart [BM07], a minimal penalty is defined as a function penmin :
Mn → R such that the estimator selected by a penalty equal to upenmin does not
satisfy an oracle inequality when u < 1 but does satisfy one when u > 1. Since
we minimize Pnγ(f̂m) + pen(m) instead of Pγ(f̂m), the ideal penalty is penid(m) =

(P − Pn)γ(f̂m). Arlot and Massart [AM08] decompose the ideal penalty in three
terms p1(m) + p2(m) + δ(m), with

p1(m) = P (γ(f̂m)−γ(fm)), p2(m) = Pn(γ(fm)−γ(f̂m)), δ(m) = (P−Pn)γ(fm) ,

and show that the centered term δ(m) does not matter so an optimal penalty is

penopt(m) ≈ p1(m) + p2(m) .
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On the other hand, choosing the “penalty" penmin(m) = p2(m) leads to a criterion
that is close to the bias ‖f−fm‖2. The selected estimator is the minimizer of the bias
and therefore a very complex m which has disastrous performances, see the regular
histogram example (1.4). This heuristic applies for linear estimator selection as well
and we prove in [4, Theorem 4.3] that the minimal penalty is given by

penmin(m) =
1

n
(2E [m(X,X) ]− E [Am(X,X) ]) ,

where
∀(x, y) ∈ X2, Am(x, y) =

∫
X
m(x, z)m(z, y)dµ(z) . (1.23)

The analysis of this last result is richer than usual. First, for projection estimators,
we have by construction AmS = mS, which implies that

penmin(mS) =
1

2
penopt(mS) .

This property is called “slope heuristic" in [BM07] and was already proven for the
selection of projection estimators in my PhD article [10]. It is linked with Arlot and
Massart’s approach via the relation

p1(mS) = p2(mS) =
∥∥∥f̂mS − fmS∥∥∥2

,

which implies that

penopt(m) ≈ p1(m) + p2(m) ≈ 2p2(m) ≈ 2penmin(m) .

It is here a corollary of our general result. The situation is different for Parzen
estimators since Amk,h(x, x) = ‖k‖2

h
, and therefore

penmin(mk,h) =
2k(0)− ‖k‖2

nh
, penopt(mk,h) =

2k(0)

nh
.

There exists a relationship between the minimal and the optimal penalty, but it is
not universal anymore since it depends on the kernel k. A similar situation was
described by Arlot and Bach [AB09] in a regression setting. Interestingly, one can
notice that, if ‖k‖2 > 2k(0) the minimal penalty is negative, which implies that
minimizing an unpenalized empirical loss yields an oracle inequality. To the best of
our knowledge, such phenomenon was only observed in a very particular classification
setting in [FT06].
The slope heuristic is used in practice to calibrate a penalty when the shape of penopt

is known, that is when a function p :Mn → R is known such that penopt = zp for
an unknown constant z. In this situation, Arlot and Massart [AM08] proposed to
evaluate z using the following slope algorithm. For any u ∈ R, compute the function
m̂u selected by the penalty pen = up. Call û a constant such that the complexity
(for example d in regular histograms or 1/h for Parzen estimators) of m̂u is very
large when u < û and much smaller when u > û. Choose finally the constant u = 2û
to calibrate the penalty. The idea is that ûp should be close to penmin to observe a
transition in the complexity of m̂u so 2ûp ≈ 2penmin(m) ≈ penopt(m) by the slope
heuristic. In any case, the complexity of m̂u, that is a non-increasing function of u,
is guaranteed to remain reasonable when one uses the slope algorithm with u > 0.
This first algorithm will not work anymore for the selection of Parzen kernels.
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1.3.3 Cross-validation selection of linear estimators

This section presents the results of the article [17]. Our purpose was to extend some
results of [3], which are recalled in Section 1.2, to linear estimator selection.
The first result that we presented in Section 1.2.3, [3, Lemma 1], is a lemma proving
that many cross-validation selectors based on leave-p-out or V -fold schemes could
be studied simultaneously by studying V -fold penalization criteria

Ccv
pen,EvfV ,C

(m) = Pnγ(f̂m) + CpenEvfV
(m) ,

for different values of V and C. This lemma is no longer true for general linear
estimators. In fact, it is still true that leave-p-out penalties (and resampling ones
based on an exchangeable resampling vector) are proportional to n-fold penalties.
These penalties are still a linear combination of a centered empirical mean and the
totally degenerate U -statistic based on m, that is

Um =
∑

1≤i 6=j≤n

m(Xi, Xj)− E [m(Xi, Xj)|Xi ]− E [m(Xi, Xj)|Xj ] + E [m(Xi, Xj) ] .

The difference is that the decomposition of cross-validation criteria

CE(m) =
1

|E|
∑
T∈E

PT cγ(f̂Tm)

also involves totally degenerate U -statistics associated to functions Am defined in
(1.23). The simplification in Section 1.2 was due to the relation m = Am which only
holds for projection estimators. However, our general method of proof can still be
applied to study both selectors.
This is why we have been able to extend all oracle results of [3] to linear estimators,
showing in particular oracle inequalities for any V -fold cross-validation (penalized)
criteria and any leave-p-out (penalized) criteria. Moreover, using the concentration
for U -statistics of [GN15] instead of [HRB03], we extend in [17, Theorem 5] the
results [3, Theorems 5 and 9] to any Polish-space valued observations, in particular
Rd-valued observations.
The heuristic (HCC) for comparison of criteria of Section 1.2 remains valid in linear
estimator selection. It is an interesting problem, though technically challenging (see
[Mag15, Chapter 4]), to see if the conclusions in the end of Section 1.2 remain valid.

1.3.4 From linear estimator selection to sharp adaptive estimators

The material of this section is also borrowed from the paper [17] that I am preparing
in collaboration with S. Arlot and N. Magalhães. We apply asymptotically optimal
oracle inequalities for linear estimator selection to derive adaptive estimators. Given
a class F of densities and an estimator f̂ , the maximal risk of f̂ over F is defined
by

RF(f̂) = sup
f∈F

Ef‖f − f̂‖2 .

The minimax risk over F is defined as the minimum, over all estimators, of the
maximal risks,

R(F) = inf
f̂
RF(f̂) .
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An estimator f̂ is called asymptotically minimax over F when there exists a constant
ε ≥ 0 such that

RF(f̂) ≤ (1 + ε)R(F) .

It is called sharp minimax over F , when there exists εn → 0 such that

∀n ≥ 1, RF(f̂) ≤ (1 + εn)R(F) . (1.24)

To apply our result, we have to define a class of functions F and a proper collection
of estimators. On X = [0, 1], let (ϕi)i∈N denote the Fourier basis defined for any
x ∈ X by ϕ0(x) = 1 and

∀k ∈ N \ {0} , ϕ2k−1(x) =
√

2 cos(2πkx), ϕ2k(x) =
√

2 sin(2πkx) . (1.25)

Given two positive real numbers β and L, define the ellipsoid

Eβ,L =

{
(ak)k∈N, s.t.

∑
k∈N

k2βa2
k ≤ L2

}
.

Denote by 〈., .〉 the inner product in L2(µ). Our class of interest is the Sobolev class
Fβ,L of functions g : [0, 1]→ R such that the Fourier coefficients (〈g, ϕi〉)i∈N satisfy
(ak)k∈N ∈ Eβ,L, where a0 = Pϕ0 and

∀k ≥ 1, ak =
√
〈g, ϕ2k−1〉2 + 〈g, ϕ2k〉2 .

The minimax risk over Fβ,L was computed by Pinsker [Pin80] who evaluated Cβ
such that, as n→∞,

R(Fβ,L) = (1 + o(1))CβL
1

2β+1n−
β

1+2β .

Pinsker also built estimators f̂β,L sharp minimax over Fβ,L. In this presentation we
only need to precise that there exist an integer Nβ,L ≤ n and a sequence (ωβ,L,i)i∈N
in [0, 1]N such that

f̂β,L =

Nβ,L∑
i=0

ωβ,L,i(Pnϕi)ϕi .

Hence, Pinsker’s estimators are linear and can be selected with the different op-
timal selection criteria that we presented. For example, the optimal penalty of
Section 1.3.1 can be used since the weights satisfy, for any k ≥ 1, ωβ,L,2k−1 = ωβ,L,2k,
therefore

penopt(mω) =

Nβ,L∑
i=1

ωβ,L,i .

One should also mention that projection estimators can be minimax but they are
not sharp minimax in general.
Pinsker’s minimax estimators depend on parameters β and L that are typically un-
known to the statistician. Therefore, one looks for estimators f̂ which are minimax
on Sβ,L for any value of these parameters in intervals β ∈ Bn and L ∈ Ln, without
knowing in advance to which Sβ,L f belongs. Such estimators are called adaptive
to β and L to emphasize that they behave as the best “estimator" one could built
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if we knew them in advance. They are called sharp adaptive when they are simul-
taneously sharp minimax for all β ∈ Bn and L ∈ Ln. Estimators sharp adaptive to
β and L have been built by Golubev [Gol92], Efromovitch [Efr05], Rigollet [Rig06],
Rigollet and Tsybakov [RT07]. These used blockwise Stein methods or aggregation
procedures, our estimators are, to the best of our knowledge, the first obtained by
minimization of a penalized empirical loss.
To apply our selection procedures, we cannot use all Pinsker’s estimators, we first
discretize properly the intervals Bn and Ln to produce a finite collection of estima-
tors. The discretized sets should be sufficiently refined to approach any point in the
original interval at rate 1/n when n→∞, and it shall not be too large for the size
of the collection to remain polynomial in n. Taking care of both constraints, we
build sharp adaptive estimators over Sobolev classes with parameters β ∈ Bn and
L ∈ Ln with Lebesgue measures µ(Bn) = O(n) and µ(Ln) = O(log n). The rate of
convergence of the sequence εn in (1.24) is n−γ(β) for some function γ. It improves
upon previous results where this rate was always larger than 1/ log n. However, it
is not optimal since one can check that Pinsker’s estimators achieve n−4γ(β). This 4
is for now our price to pay for adaptivity.
Pinsker’s weights (ωβ,L,i)i∈N\{0} belong to the collection Wni of non increasing se-
quences of real numbers in [0, 1]. Sharp minimax adaptivity over Sobolev balls and
other classes of interest (see [CT02] for examples) can therefore also be deduced
from an oracle inequality over the class of estimators (f̂ω)ω∈Wni

, where for any ω,

f̂ω =
+∞∑
i=0

ωi(Pnϕi)ϕi .

This is, for example, the point of view adopted by Cavalier and Tsybakov [CT02] for
inverse problems or Rigollet [Rig06] in least-squares density estimation. Of course,
the collection Wni is much too large to apply directly our selection results, but it
can be discretized by a finite familyWn

ni of cardinality growing as the exponential of
a power of log n. This discretization uses the same weakly geometrically increasing
blocks as blockwise Stein’s construction. The maximal risk of the infimum over all
estimators (f̂ω)ω∈Wn

ni
is not larger than 1 + 1/

√
log n times the maximal risk of the

infimum over all estimators (f̂ω)ω∈Wni
. To build the collection Wn

ni, we adapt the
construction of Rigollet [Rig06] and prove that our methods of selection can thus be
used to obtain estimators with maximal risks not larger than 1 +O(1/

√
log n) times

the maximal risk over all (f̂ω)ω∈Wni
, providing in particular other sharp adaptive

estimators over Sobolev balls.

1.4 Interaction neighborhood selection in discrete random
fields

This section presents some applications of model selection in discrete random fields
that I developed with D. Y. Takahashi in the articles [6, 9]. We were interested in
discrete random fields as natural models for brain activity in neuroscience.
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1.4.1 Position of the problem

A discrete random field is a triplet (S,A, P ) where S a finite set (large), A a finite
set (small, bounded), and P is a probability measure on the set of configurations
X = AS. We are interested in the estimation of the conditional probabilities

∀x ∈ X,∀i ∈ S, P (x(i)|x(j), j 6= i) ,

based on the observation of a sequence X1, . . . , Xn of independent configurations
distributed according to P .
Discrete random fields are used in neuroscience to model brain activity see [SBSB06].
The set S is the set of neurons, these neurons communicate via electric signals
(spikes) extremely localized in time that have always the same frequency and inten-
sity, so the activity of neuron i can be either on (a spike is emitted) or off (no spike is
emitted), therefore we use the finite alphabet A = {−1, 1} to describe at each time
the activity of i. The conditional probabilities encode some functional dependencies
between neurons and this is why they are our object of interest. More precisely,
[SBSB06] use Ising measures to model P . Let J : S2 → R denote a function called
potential, the probability of the configuration x ∈ X is

PJ(x) =
1

ZJ
e
∑

(i,j)∈X2 x(i)x(j)Ji,j ,

in particular, for any i ∈ S,

PJ(x(i) = 1|x(j), j 6= i) =
1

1 + e−2
∑
j 6=i Ji,jx(j)

.

Therefore, Ji,j > 0 means that a spike of j favors a spike in i, we say that j has an
excitatory influence on i, Ji,j < 0 means that a spike of j prevents a spike in i, we
say that j has an inhibitory influence on i and Ji,j = 0 means that j has no influence
on i. The absolute value of Ji,j measures the strength of these influences.
Inference in Ising models has already been studied, see among others [BMS08,
CT06, RWL10] who proposed nice efficient algorithms to recover the set of edges
E = {(i, j) ∈ S2, s.t. Ji,j 6= 0} of the interaction graph (S, E). This set is a natural
object of interest in neuroscience, which makes the estimators of [BMS08, RWL10]
of particular interests, since they can be efficiently computed on very large graphs
under sparsity assumptions. However, by taking an exact recovery approach, theo-
retical properties of these estimators such as the consistency results, are only verified
under severe restrictions on the underlying graph. In particular, the incoherence as-
sumption for `1-penalization methods of [RWL10] cannot be checked in practice. No
risk bounds for the estimators are available and the properties of the estimators are
unknown when these assumptions fail, or when the Ising model is not true.
In [6, 9], we build estimators for the conditional probabilities and provide risk bounds
for these estimators. We work in the Ising model in [9] and in general discrete random
fields in [6]. In both papers, our approach is based on model selection. We fix some
site i ∈ S and focus on the estimation of the family of conditional probabilities
(Pi(x))x∈X, where Pi(x) = P (x(i)|x(j), j 6= i) that, by some abuse of notation, we
denote Pi. To assess the performances of an estimator P̂i = (P̂i(x))x∈X, we study
two losses. In [9], we studied the maximal loss

`i,∞,P (P̂i) =
∥∥∥P̂i − Pi∥∥∥

∞
, where ‖f‖∞ = max

x∈X
|f(x)| .
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In [6], we studied the least-squares loss

`i,2,P (P̂i) =
∥∥∥P̂i − Pi∥∥∥2

P
, where ‖f‖2

Q =
∑
x∈X

f(x)2Q(x) .

Remark that these losses are always upper bounded by 1. In both cases, the risk of P̂
is measured by the integrated loss Ri,P (P̂i) = EP (`i,P (P̂ )). To build our estimators,
we assume that we observe a sample X1, . . . , Xn of i.i.d. random configurations
distributed according to P , which is used to build the empirical measure P̂n defined
for any function f : X → R by P̂nf = 1

n

∑n
t=1 f(Xt). Given a subset m ⊂ S, we

define the conditional probabilities P̂i,n,m = (P̂i,n,m(x))x∈X and Pi,m = (Pi,m(x))x∈X,
where P̂i,n,m(x) = P̂n(x(i)|x(j), j ∈ m\{i}) and Pi,m(x) = P (x(i)|x(j), j ∈ m\{i}).
Given a collection Mn of subsets m ⊂ S, our purpose is to select an estimator
m̂ ∈Mn such that the estimator P̂i,n,m̂ has a risk as close as possible to the infimum
infm∈Mn Ri,P (P̂i,n,m). We look therefore for a subset m ⊂ S that predicts as well as
possible the conditional probabilities Pi.

1.4.2 Oracle inequalities for neighborhood selection

As the results for least-squares risks are easier to expose, we now focus on this risk.
Since i is fixed, we will moreover not mention it in the notation of the loss and
denote by `P (P̂i,n,m) = `i,2,P (P̂i,n,m), RP (P̂i,n,m) = EP

[
`P (P̂i,n,m)

]
, results for the

maximal loss can be found in [9].
The starting point of our analysis is the following computation of the risk of P̂i,n,m.
We show in [6, Theorem 3.1] the following bound.

∀m ⊂ S, EP
[
`P (P̂i,n,m)

]
≤
[
‖Pi − Pi,m‖2

P + 6
|A||m|

n

]
∧ 1 . (1.26)

The risk of P̂i,n,m is decomposed as a sum of an approximation term ‖Pi − Pi,m‖2
P

measuring the bias of the estimator and a variance term C |A|
|m|

n
measuring the

complexity to estimate Pi,m. The variance term has the expected form since |A||m|
is the number of conditional probabilities to estimate when we use the subset m and
therefore, the number of parameters in the corresponding statistical model.
Now, following the general approach for model selection of Section 1.1.1, we estimate
the loss of P̂i,n,m to find a data-driven criterion C(m) and choose as a final estimator

P̂i,n,m̂, where m̂ = arg min
m∈Mn

C(m) .

From (1.26), we can restrict Mn to subsets m ⊂ X with cardinality smaller than
`n = log|A| n so we can guarantee a non trivial risk bound for any P̂i,n,m, with
m ∈ Mn. This helps to reduce drastically the practical implementation of the
estimator, making it actually computable for the analysis of a real data-set from
neuroscience (see Section 7 in [6]).
As the variance part of the risk is computable, we only have to estimate the bias
term. We prove [6, Proposition A.11 in the supplementary material] a Pythagoras
relation for the least-squares loss

‖Pi − Pi,m‖2
P = ‖Pi‖2

P − ‖Pi,m‖
2
P .
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Finally, it is a corollary of [6, Theorem 3.1] that

∀m ∈Mn, EP
[
−
∥∥∥P̂i,n,m∥∥∥2

P̂

]
≥ −‖Pi,m‖2

P − 6
|A||m|

n
.

We propose the following criterion

C(m) = −
∥∥∥P̂i,n,m∥∥∥2

P̂
+ C
|A||m|

n
. (1.27)

Using concentration inequalities as in Section 1.1.1, we prove in [6, Theorem 3.2]
that, if C ≥ 12, there exists a function c = c|A| > 0 such that, ifMn = {m ⊂ S, s.t. |m| ≤ `n},
then

cRP (P̂i,n,m̂) ≤ inf
m∈Mn

{
‖Pi − Pi,m‖2

P +
|A||m|

n

}
+

(`n log |S|)2

n
.

In other words, the selected m̂ optimizes the risk bound (1.26) up to the remainder
term (`n log |S|)2

n
that is a price to pay for the selection step. A very interesting feature

of this result for analyzing neuroscience data-sets is that it holds without restrictions
on the shape of P which can be Ising without restriction on the interaction graph,
and can even not be Ising.
To go further in our analysis and explain how we derive rates of convergence, we shall
however now restrict the discussion of the end of the paragraph to Ising measures
where the control of the bias term is particularly elementary. Actually, we always
have ‖P − Pi,m‖2

P ≤ 2 ‖P − Pi,m‖∞ and we show in [9, Proposition 4.4] that there
exists a function C = C(β), where β = maxi∈S

∑
j∈S |Ji,j| is the inverse of the

temperature in the Ising Model (see [Geo88]), such that

‖P − Pi,m‖2
P ≤ C(β)

∑
j /∈m

|Ji,j| .

We deduce that, for example, when the |Ji,j| (arranged by non increasing absolute
values) decrease exponentially, and provided that |S| is at most polynomial in n,
P̂i,n,m̂ converges to Pi at a rate n−γ. Other rates, and other examples of more
general Gibbs measures are presented in [6, Section 4.2].

1.4.3 Minimal penalty phenomenon and slope heuristic for neighbor-
hood estimation

As for the selection of linear estimators, we prove in [6, Theorem 5.1] that there
is a minimal penalty for neighborhood selection, which is given by the following
equivalent of p2(m) (see Section 1.3.2).

p2(m) =
∥∥∥P̂i,n,m − Pi,m∥∥∥2

P̂
.

Moreover, we also prove in [6, Theorem 5.2] that p1(m) + p2(m) is an ideal penalty
(if the cardinality |Mn| is not larger than the exponential of some power of log n),
where

p1(m) =
∥∥∥P̂i,n,m − Pi,m∥∥∥2

P
.
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Of course, none of these quantities can be computed in practice, so no actual “slope
algorithm" can be deduced from them. Nevertheless, we show [6, Lemma A.5 in the
supplementary material] that

p1(m) ≈ p2(m) ,

and thus the relationship

penmin(m) =
1

2
penopt(m) .

We use this result to suggest to calibrate in practice the constant C of the penalty
defining our selection criterion (1.27) by the slope algorithm of Section 1.3.2. We
compare in simulated data-sets this choice of C with the constant 12 deduced from
the risk bound (1.26). It turns out that the theoretical bound is extremely pessimistic
and leads to very small neighborhoods while the slope algorithm provides a much
more reasonable choice. This was even more interesting in the analysis of a real
data-set. All these experiments can be found in [6, Sections 6 and 7] and the set
of MATLAB routines that we used can be downloaded from www.princeton.edu/∼
dtakahas/publications/LT11routines.zip.
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Chapter 2

Subgaussian Estimators

2.1 Position of the problem

I present in this section my article with L. Devroye, G. Lugosi and R.I. Oliveira [1]
on the estimation of the mean ν(P ) ∈ R of a probability distribution P assuming
it has finite variance σ2(P ), based on the observation of an i.i.d. sample X1, . . . , Xn

with common distribution P . By the central limit theorem, the empirical mean
νn = 1

n

∑n
i=1 Xi satisfies,

∀x > 0, sup
P∈P2

lim
n→∞

P

(
νn − ν(P ) > σ(P )

√
2x

n

)
= Φ(1−

√
2x) ,

where Φ denotes the c.d.f. of the standard Gaussian random variable and P2 denote
the set of all distributions such that EP [X2 ] <∞. This result is essentially optimal,
Catoni [Cat12a] proved that for any set P of distribution containing (N (m, 1))m∈R,
for any x > 0 and any estimator ν̂x possibly depending on x,

sup
P∈P

P

(
νx − ν(P ) > σ(P )

√
r(x)

n

)
≤ Φ(1−

√
2x) ,

only if r(x) ≥ 2x. As Φ(1−
√

2x) ≤ e−x, the central limit theorem implies that the
empirical mean is asymptotically subgaussian, that is

∀x > 0, sup
P∈P2

lim sup
n→∞

P

(
νn − ν(P ) > σ(P )

√
2x

n

)
≤ e−x . (2.1)

We are interested in the construction of estimators satisfying this property non
asymptotically. More precisely, let us introduce the following definitions.

Definition 1. Let n be a positive integer, L > 0, xn > 0. Let P ⊂ P2 be a family
of probability distributions over R.

1. single-x subgaussian estimation: a single-x L-subgaussian estimator for
(P , xn) is a measurable mapping ν̂ : Rn×[0, xn]→ R such that if P ∈ P, x ≤ xn,
and Xn

1 = (X1, . . . , Xn) is a sample of i.i.d. random variables distributed as P ,
then

P

(
|ν̂(Xn

1 , x)− ν(P )| > Lσ(P )

√
1 + x

n

)
≤ e−x . (2.2)

35
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We also write ν̂x(·) for ν̂(·, x).

2. multiple-x subgaussian estimation: a multiple-x L-subgaussian estimator
for (P , xn) is a measurable mapping ν̂ : Rn → R such that, for each x ≤ xn,
P ∈ P and i.i.d. sample Xn

1 = (X1, . . . , Xn) distributed as P ,

P

(
|ν̂(Xn

1 )− ν(P )| > Lσ(P )

√
1 + x

n

)
≤ e−x . (2.3)

The difference between (2.2) or (2.3) and the original subgaussian bound (2.1) is that
we replaced the optimal

√
2x by L

√
1 + x, with some possibly suboptimal constant

L >
√

2. We shall discuss the possibility to reach the optimal L =
√

2 + o(1) in
(2.2) or (2.3), replacing x by 1 + x is a technical convenience to avoid unnecessary
discussions when x ≤ 1.
It transpires from these definitions that multiple-x estimators are preferable when-
ever they are available, because they combine good typical behavior with nearly
optimal bounds under extremely rare events. By contrast, the need to commit to a
x in advance means that single-x estimators may be too pessimistic when a large x
is desired. The main problem addressed in this section is the following:

Given a family P (or more generally a sequence of families Pn), find the largest
possible sequence xn such that multiple-x L-subgaussian estimators for (P , xn) exist
for all large n, and with a constant L that does not depend on n.

2.2 Main results

We discuss in these notes the examples where P is the class P2 of all distributions
with finite second moment, the class Pσ2 ,P

≤σ
2 ⊂ P2 of distributions respectively with

variance equal to σ2 and smaller than σ2 and the class Pkrt≤κ of distributions having

a fourth moment and a kurtosis
√

E[ (X−ν(P ) )4 ]
σ(P )2

≤ κ, other examples can be found in
[1].

The most classical estimator is the empirical mean νn and we first recall its perfor-
mances to explain why our estimators outperform it. Catoni [Cat12a] proved that
(2.3) is satisfied by νn over Pkrt≤κ for any sequence xn such that exn = o(n). Bern-
stein inequality proves that, under exponential moment assumptions on P , (2.3)
is still true for νn for any xn = o(n), with optimal L =

√
2 + o(1), a result that

cannot be improved in general by the Gärtner-Ellis theorem (see [DZ02]), unless P
has subgaussian tails.
We prove that there exists a constant c such that multiple-x subgaussian estimators
exist for (P , cn) and P = Pσ2 [1, Theorem 3.2] or P = Pkrt≤κ [1, Theorem 3.6].
Moreover, on Pkrt≤κ, we can even reach the optimal L =

√
2 + o(1) for any xn =

o((n/κ)2/3). We also prove (Theorems 3.2 and 3.6) that, for these classes, there
exists a constant C such that no single-x subgaussian estimators exist for (P , Cn).
Notice that these estimators clearly outperform the empirical mean even on classes
of distributions having exponential moments.
Catoni [Cat12a] already built single-x subgaussian estimators achieving (2.2) for
(P2,

n
2
− 1). In contrast to Catoni’s result, we prove (Theorem 3.2) that there
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doesn’t exist multiple-x estimators over P2 for any sequence xn →∞ and therefore
that the notions of single-x and multiple-x estimators are distincts. In fact we
show (Theorem 3.2) that there exist multiple-x estimators over all distributions
with fixed variance σ2, and actually over all distributions with variance σ2 between
two bounds 0 < σ2

1 ≤ σ2 ≤ σ2
2 < ∞, but there doesn’t exist any when the ratio

σ2/σ1 is unbounded.
In particular, one cannot build subgaussian estimators on the class P≤σ2 of distri-
bution with variance bounded by σ. Actually, it is not even possible on the class
(B(p))p∈(0,1) of Bernoulli distributions. On the other hand, one can build estimators
ν̂σ such that

∀x ∈ (0, cn),∀P ∈ P≤σ2 , P

(
ν̂σ − ν(P ) > Lσ

√
1 + x

n

)
≤ e−x , (2.4)

The difference is that σ in (2.4) is only an upper bound on the variance σ(P ) in (2.3).
Such weakly subgaussian estimators are however sufficient to perform the estimator
selection procedure that are presented in Section 2.5.
Consider, for some α ∈ (0, 1) andM > 0, the class PM1+α of all distributions satisfying

E
[
|X − ν(P )|1+α

]
≤M .

We prove that, for any n ≥ 1, x > log 2 and any estimator ν̂x there exists P ∈ PM1+α

such that, with probability larger than e−x the difference ν̂x − ν(P ) is larger than
M1/(1+α)

(
x
n

)α/(1+α). This result proves that neither (2.2) (and thus (2.3)) nor (2.4)
can be achieved over PM1+α. In particular, we cannot build confidence intervals for
ν(P ) of size O(n−1/2) and the rate n−α/(1+α) achieved by the empirical mean when
P lies in the domain of attraction of (1 + α)-stable distributions (see Feller [Fel71]
for definitions and theorems) is optimal.

2.3 Main proof ideas

This section gathers the main ideas underlying the proofs of our results. We present
the median of means principle and the method of confidence intervals for the con-
struction of subgaussian estimators in Section 2.3.1. Section 2.3.2 presents the 1-
parameter family method to build minimax lower bounds in our problem.

2.3.1 Upper bounds

Our constructions of estimators use two main ideas. The first one is the median of
mean principle. Suppose to simplify that x is a divisor of n. As for the construction
of V -fold estimators, following Hsu [Hsu10], we divide {1, . . . , n} into x disjoint
blocks Bj with the same cardinality |Bj| = n/x and build the vectors of (empirical)
means Y = (Yi)

x
i=1, where Yi = x

n

∑
j∈Bi Xj, our preliminary estimator is the median

Y x of the vector Y (the median of means). Using Tchebycheff’s inequality to bound
the probability that Yi /∈ [ν(P )±2eσ(P )

√
x
n
] by e−1 and a basic concentration bound

for binomial random variables, we get that

P

(
|Y x − ν(P )| > 2eσ(P )

√
x

n

)
= P

(
x∑
i=1

1
Yi /∈[ν(P )±2eσ(P )

√
x
n

]
≥ n

2

)
≤ e−x .
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In other words, Y x is a single-x subgaussian estimator over P2 with LP2 = 2e and
xn = n. Now, one cannot turn single-x into multiple-x estimators, but one can build
multiple-x estimators from the slightly stronger concept of subgaussian confidence
intervals, that is, roughly speaking, an empirical confidence interval for ν(P ) with
“subgaussian length". On the class P≤σ2 , one deduces from our collection of medians
of mean estimators (Y x)x∈(0,n) the collection of confidence interval (Îx)x∈(0,n) where
Îx = [Y x ± 2eσ

√
x
n
].

Now we combine these intervals to produce a multiple-x estimator. For any k ≤ n,
the interval Îk has length 4eσ

√
k
n
and satisfy

P (ν(P ) ∈ Îk) ≥ 1− e−k .

Now define k̂n as the minimal k ≤ n − 2 such that ∩n−2
j=k Îj 6= ∅, the set ∩n−2

j=k̂n
Îj is

a non-empty closed interval and our final estimator ν̂ is its midpoint. To conclude,
let x ≤ n− 4 and k = bxc+ 2, then

1. By a union bound P (ν(P ) ∈ ∩n−2
j=k Îj) ≥ 1− e1−k ≥ 1− e−x.

2. When
{
ν(P ) ∈ ∩n−2

j=k Îj

}
holds, k̂n ≤ k.

3. When k̂n ≤ k, ν̂ ∈ Îk.

4. When both ν̂ and ν(P ) belong to Îk,

|ν̂ − ν(P )| ≤ = 4e

√
k

n
= 4e

√
x+ 2

n
≤ 4
√

2e

√
x+ 1

n
.

Hence, ν̂ is a x-multiple weakly 4e
√

2-subgaussian estimator over P≤σ2 with xn =
cP≤σ2

n and a subgaussian one over Pσ2 .

Although general, the method of confidence intervals looses constant factors. Our
second idea for building estimators, which is specific to the bounded kurtosis case,
is to use a data-driven truncation of the data to improve the performances of the
empirical mean. By using preliminary estimators of the mean and variance (also
based on the median of means principle), we truncate the random variables in the
sample and obtain a Bennett-type concentration inequality with sharp constant
L =

√
2 + o (1). A crucial point in this analysis is to show that our truncation

mechanism is fairly insensitive to the preliminary estimators being used.

2.3.2 Lower bounds

The negative results are minimax lower bounds over simple families of distributions
such as Bernoulli distributions, Laplace distributions with fixed scaling parameter
for single-x, and the Poisson family for multiple-x estimators. The main point is
that it is easy to compare the probabilities of an event for different values of the
parameter. Interestingly, Catoni [Cat12a] also derives his lower bounds using a one
dimensional family (in his case, Gaussians with fixed variance σ2 > 0).
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As an example, consider the class of all Laplace distibutions with scale parameter
equal to 1. To define such a distribution, let λ ∈ R and let Laλ be the probability
measure on R with density

dLaλ
dx

(x) =
e−|x−λ|

2
.

Denote by PLa = {Laλ : λ ∈ R} the class of all such distributions.
A simple calculation reveals that for all λ ∈ R, the mean, variance, and central third
moment are νLaλ = λ, σ2

Laλ
= 2 and Laλ|X − λ|3 = 6 ≤ (η σLaλ)3 with η = 31/3 21/6.

The next result proves that single-x L-subgaussian estimators are limited to linear
xn even over the one-dimensional family PLa.

Theorem 1. If n ≥ 2 then, for any constant L ≥
√

2, there are no single-x L-
subgaussian estimators for (PLa, 9L

2n− 1).

Proof. We proceed by contradiction, assuming that there exist L-subgaussian single-
x estimators Êx for (PLa, x) where x = 9L2n− 1. We set

λ = 2L
√

2 (1 + x)/n

and consider Xn
1 =d La⊗n0 and Y n

1 =d La⊗nλ . The triangle inequality applied to
the exponents of dLaλ/dy and dLa0/dy shows that the densities of the two product
measures satisfy, for all yn1 = (y1, . . . , yn) ∈ Rn

dLa0

dyn1
(yn1 ) ≥ e−λn

dLaλ
dyn1

(yn1 ) ,

and therefore,

P
(
Êx(X

n
1 ) ≥ λ

2

)
≥ e−λnP

(
Êx(Y

n
1 ) ≥ λ

2

)
. (2.5)

Using the definition of λ and the fact that νLaλ = λ and σ2
Laλ

= 2, we see that the
right-hand side above is simply

e−λn P

(
Êx(Y

n
1 ) ≥ νLaλ − LσLaλ

√
1 + x

n

)
≥ e−λn (1− e−x).

On the other hand, the left-hand side in (2.5) is

P

(
Êx(X

n
1 ) ≥ νLa0 + LσLa0

√
1 + x

n

)
≤ e−x.

We deduce
e−λn ≤ e−x

1− e−x
≤ 2e−x.

If we use again the definition of λ, we see that

e−2L
√
n 2(1+x) ≤ 2 e−x,

or
e−6
√

2L2 n ≤ 2e1−9L2n ⇒ n ≤ 1 + ln 2

L2 (9− 6
√

2)
.

For L ≥
√

2, some simple estimates show that this leads to a contradiction when
n ≥ 2.
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2.4 Bibliographic remarks

The explicit distinction between single-x and multiple-x subgaussian estimators, and
our constructions of multiple-x subgaussian estimators for large xn, are all new, al-
though the method of confidence intervals might be related at a high level to Lepskii’s
adaptation method [Lep90, Lep91]. On the other hand, constructions of single-x es-
timators are implicit in older works on stochastic optimization of Nemirovsky and
Yudin [NY83] (see also Levin [Lev05] and Hsu [Hsu10]), sampling from large dis-
crete structures by Jerrum, Valiant, and Vazirani [JVV86], and sketching algorithms,
Alon, Matias, and Szegedy [AMS96]. Besides the estimator selection problem that
we mentioned earlier, subgaussian estimators have received many attention recently,
as well as their generalizations to multivariate settings, and their applications in
a variety of statistical learning problems where heavy-tailed distributions may be
present, see Catoni [Cat12a], Hsu and Sabato [HS14], Brownlees, Joly, and Lugosi
[BJL15], Minsker [Min13], Audibert and Catoni [AC11], Bubeck, Cesa-Bianchi, and
Lugosi [BCBL13], or my paper with R. I. Oliveira [19]. Most of these papers use
single x subgaussian estimators. Catoni’s paper [Cat12a] is the closest in spirit to
ours, as it focuses on subgaussian mean estimation as a fundamental problem. That
paper presents single x subgaussian estimators with nearly optimal L =

√
2 + o (1)

for a wide range of x and the classes Pσ2 and Pkrt≤κ. The single x subgaussian es-
timator introduced by [Cat12a] may be converted into a multiple-x estimators with
subexponential (instead of subgaussian) tails for Pσ2 by choosing the single param-
eter of the estimator appropriately. Loosely speaking, this corresponds to squaring
the term

√
x in (2.3). Catoni also obtains multiple-x estimators for P2 with subex-

ponential tails. These ideas are strongly related to Audibert and Catoni’s paper on
robust least-squares linear regression [AC11].

2.5 An application to estimator selection

To conclude this section, I would like to present an application of subgaussian es-
timators to estimator selection. The main ideas of this paragraph come from the
paper of Baraud [Bar11]. It is an adaptation of his general construction to the least-
squares density estimation framework that was originally developed in my paper
with R. I. Oliveira [19].
As in Section 1.1.1, we assume that we want to estimate the density f with respect
to a known measure µ of a probability measure P based on the observation of an
i.i.d. sample X1, . . . , Xn. To this purpose, we are given a collection (f̂m)m∈Mn of
estimators, for example, thresholded estimators with various thresholds λ, projec-
tion estimators, linear estimators or even “black box" estimators provided by some
“experts". Let Sp be a linear space with finite dimension p that may grow with
n. The space Sp is typically a large dimensional approximation space for all the
estimators (f̂m)m∈Mn . To avoid technicalities in this presentation, assume now that
all (f̂m)m∈Mn actually belong to Sp. Let (ϕi)i∈{1,...,p} denote an orthonormal basis
of Sp so each estimator f̂m is equal to

f̂m =

p∑
j=1

β̂m,jϕj ,
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its loss Pγ(f̂m) is equal to

Pγ(f̂m) ≤
p∑
j=1

β̂2
m,j − 2β̂m,jPϕj .

To estimate this loss and build a selection criterion, it is therefore sufficient to
estimate, as in Section 1.1.3, the expectations Pϕj, for all j ∈ {1, . . . , p}. Assume
that some deterministic upper bound σ2

n ≥ ‖f‖∞ is available to the statistician,
then, for any function ϕj, Pϕ2

j ≤ ‖f‖∞ ‖ϕj‖
2 ≤ σ2

n. Therefore, one can build a
weakly subgaussian estimator ϕ̂j of Pϕj satisfying, for some absolute constants C
and L,

∀x ∈ [0, Cn], P

(
|ϕ̂j − Pϕj| > Lσn

√
1 + x

n

)
≤ e−x . (2.6)

Moreover, (2.6) holds even when ϕj(X) may have heavy-tailed distributions.
Define the functions `(x) = Lσn

√
1 + x+ log p and the event

Ω(x) =

{
∀j ∈ {1, . . . , p} , |ϕ̂j − Pϕj| ≤

`(x)√
n

}
.

For any x such that x+log p ≤ Cn, P (Ω(x)) ≥ 1−e−x. Let Pp denote the collection
of all subsets of {1, . . . , p} and for any E ∈ Pp, let SE denote the linear span of
(ϕi)i∈E. To any m ∈ Mn, we associate the collection (f̃m,E)E∈Pp of projections
f̃m,E =

∑
j∈E β̂m,jϕj of f̂m onto SE. We finally define

C(m) = min
E∈Pp

{∥∥∥f̃m,E∥∥∥2

− 2
∑
j∈E

β̂m,jϕ̂j +
1

2

∥∥∥f̃m,E − f̂m∥∥∥2

+ pen(E)

}
,

and the estimator

f̂m̂, where m̂ = arg min
m∈Mn

C(m) .

As in Section 1.1, the penalty pen compensates the fluctuations of the estimators.
Without strong assumptions on f̂m, we would have to choose penalties proportional
to p/n which would yield to poor risk bounds for the resulting estimators. This is
why we project the estimators on linear subspaces SE and build penalties pen(E)

to get better risk bounds when f̂m is often close to SE without having to assume it
beforehand. Notice that∥∥∥f̃m,E∥∥∥2

− 2
∑
j∈E

β̂m,jϕ̂j = Pγ(f̃m,E)− 2
∑
j∈E

(β̂m,j − Pϕj)(ϕ̂j − Pϕj)

− 2
∑
j∈E

(Pϕj)(ϕ̂j − Pϕj) .

The last term in the right hand side of this equation can be forgotten in a first
analysis. The second term is controlled on Ω(x) by

∀E ⊂ {1, . . . , p} ,

∣∣∣∣∣2∑
j∈E

(β̂m,j − Pϕj)(ϕ̂j − Pϕj)

∣∣∣∣∣ ≤ 1

2

∥∥∥f̃m,E − fE∥∥∥2

+2`2(x)
|E|
n

,
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where fE is the orthogonal projection of f onto SE. Therefore, if pen(E) = 2`2(x) |E|
n
,

one deduces the following bounds

∀E ⊂ {1, . . . , p} , 1

4

∥∥∥f − f̂m∥∥∥2

≤ ‖f−fE‖2+
1

2
‖fE−f̃m,E‖2+

1

2

∥∥∥f̃m,E − f̂m∥∥∥2 <∼ C(m)

and finally, for all E ⊂ {1, . . . , p},

C(m) <∼ ‖f − fE‖2 +
3

2
‖fE − f̃m,E‖2 +

1

2

∥∥∥f̃m,E − f̂m∥∥∥2

+ 2pen(E)

≤ 3
∥∥∥f − f̂m∥∥∥2

+
7

2

∥∥∥f̂m − f̃m,E∥∥∥2

+ 2pen(E) .

Thus, C(m) is a proxy for the loss of the estimators. In fact, using basic algebra, we
get that there exists an absolute constant 0 < c < 1 such that, on Ω(x),

c
∥∥∥f̂m̂ − f∥∥∥2

≤ inf
m∈Mn

{∥∥∥f̂m − f∥∥∥2

+ min
E∈Pp

{∥∥∥f̃m,E − f̂m∥∥∥2

+ pen(E)

}}
.

This inequality has the flavor of an oracle inequality as it proves some optimality of
the selected estimator via the comparison of its loss ‖f̂m̂ − f‖2 with the infimum of
the losses ‖f̂m − f‖2. As already mentioned, the bound is good when at least one
estimator is simultaneously close to f and to a small dimensional subspace SE of
S. What is interesting is that Baraud’s construction allows to derive such powerful
results from a collection of subgaussian estimators (ϕ̂j)j∈{1,...,p}. Besides, Baraud’s
estimators can be computed efficiently, at least when we start with a family of easily
computable estimators in a particular framework of Gaussian regression [BGH14].



Chapter 3

Separation rates for multiple testing

This chapter is devoted to the presentation of my article with M. Fromont and P.
Reynaud-Bouret [2]. Based on relationships between the theories of aggregated tests
and multiple testing, we adapt the definition of separation rates to multiple testing
and develop a minimax theory to measure the performances of multiple testing
procedures.

3.1 Gaussian regression framework

Our article is quite general, but we shall focus in these notes on the elementary
following Gaussian regression model where one observes a vector Y ∈ Rn such that,
for some unknown signal f ∈ Rn of interest and some unknown standard Gaussian
vector ε ∼ N (0, In)

Y = f + ε .

The vector Y is an n-dimensional Gaussian vector with distribution Pf ≡ N (f, In).

3.2 Simple tests

Given a linear subspace S0 ⊂ Rn with dimension d0, we first test the assumption
H0 : f ∈ S0 with the χ2-statistic T0 = ‖Π0Y ‖2 where Π0 is the orthogonal projection
onto the orthogonal of S0 and ‖.‖ denotes the Euclidean norm in Rn. For any
α ∈ [0, 1], let qn,d0,α the 1− α quantile of the χ2 distribution with n− d0 degrees of
freedom. For any α ∈ (0, 1), the test φn,0,α = 1T0>qn,d0,α ofH0 againstHn : f ∈ Rn\S0

has level ER(φn,0,α, S0) = α.
More generally, for any integer dm such that d0 ≤ dm ≤ n and any α ∈ [0, 1], let
qdm,d0,α the 1 − α quantile of the χ2 distribution with dm − d0 degrees of freedom.
Then, given a linear space Am with dimension dm such that S0 ⊂ Am ⊂ Rn, one
can consider the projection Πm,0Y of Y onto the orthogonal of S0 into Am and the
statistic Tm,0 = ‖Πm,0Y ‖2. The test φm,0,α = 1Tm,0>qdm,d0,α of H0 against H1,m :
f ∈ Am \ S0 has level ER(φm,0,α, S0) = α. Now a basic remark for our extension
to multiple testing is that Πm,0Y is also the projection of Y onto the orthogonal of
Sm = S0 + A⊥m so Tm,0 is also a test of Hm : f ∈ Sm against Hn,m : f ∈ Rn \ Sm.
The performances of tests of a single hypothesis are evaluated through the notion of
separation rates. The following definition, due to Baraud [Bar02], can be viewed as

43
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a non-asymptotic version of Ingster’s original work [Ing93]. Let d denote a distance
on Rn. For any g ∈ Rn and any subset S ⊂ Rn, let

d(g, S) := inf
h∈S

d(g, h) .

Given β in (0, 1), two linear subspaces S0 ⊂ Am ⊂ Rn, and a test Φ of H0 : f ∈ S0

against the alternative H1,m : f ∈ Am \ S0, the uniform separation rate of Φ with
prescribed second kind error rate β is defined by

SRβ
d

(
Φ, Am, S0

)
= inf

{
r > 0, sup

f∈Am, d(f,S0)≥r
Pf (Φ = 0) ≤ β

}
.

In words, SRβ
d

(
Φ, Am, S0

)
is the minimal distance r such that the test Φ of H0

against H1,m,r : f ∈ {g ∈ Am, s.t. d(g, S0) ≥ r} has second kind error upper
bounded by β.
The minimax separation rate over Am with prescribed level α and second kind error
β is defined as

mSRα,β
d (Am, S0 ) = inf

Φ
SRβ

d

(
Φ, Am, S0

)
,

where the infimum is taken over all possible level-α tests. Then, a level-α test
Φ is called minimax over Am if there exists Cα,β such that SRβ

d

(
Φ, Am, S0

)
≤

Cα,βmSRα,β
d (Am, S0 ). Finally, it is called adaptive in the minimax sense over a

collection A = (Am)m∈Mn of classes Am of alternatives if it is simultaneously min-
imax over all Am ∈ A, without knowing in advance the subset Am to which f
belongs.
It is not very hard to prove that the tests φm,0,α are minimax. To build adaptive
tests, the idea of Baraud [Bar02] is to aggregate these, that is, to reject H0 if one of
the tests H0 : f ∈ S0 against H1,m : f ∈ Am \ S0 is rejected. Recall that this also
means that one of the tests of Hm against Hn,m is rejected. Of course, to obtain a
final test with level α, the level of each individual tests has to be corrected. More
precisely, we shall choose a collection (αm)m∈Mn of levels and reject H0 if ΦMn = 1,
where

ΦMn = max
m∈Mn

φm,αm .

To ensure a level-α test, we have to choose (αm)m∈Mn such that

sup
f∈S0

Ef
[

sup
m∈Mn

φm,αm

]
≤ α . (3.1)

Classical choices of (αm)m∈Mn are based on union bounds such as Bonferroni weights
αm = α/|Mn| for any m ∈ Mn. A refined strategy has been proposed by Baraud,
Huet and Laurent [BHL03]: given (wm)m∈Mn such that

∑
m∈Mn

wm ≤ 1, choose
αm = wmuα, where

uα = sup

{
u > 0, s.t. sup

f∈S0

Ef
[

sup
m∈Mn

φm,wmu

]
≤ α

}
.

Adaptive properties of such aggregated tests have been studied in many frameworks,
among them of course Gaussian regression frameworks with various classes of alter-
natives [Spo96, Bar02, BHL03, LLM12, DS01], density or Poisson processes frame-
works [Ing00, FL06, FLRB11], or more complex ones corresponding to two-sample
type problems [8, FLRB13, CD15].
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3.3 Multiple testing

Let us now present the multiple testing framework. Given a collection of lin-
ear subspaces (Sm)m∈Mn of Rn, we denote, for any m ∈ Mn, by Hm the hy-
pothesis Hm : f ∈ Sm. Our goal is to test simultaneously all the assumptions
(Hm)m∈Mn . For this purpose, we also start with the collection of elementary tests
ΦMn = (φm,α)m∈Mn,α∈(0,1) of the previous section and recall that each test φm,α of
Hm against Hn,m has level α.
We want to build a multiple test which should infer which assumptions are true and
which assumptions are false. Following Goeman and Solari [GS10], we define the set
of false hypotheses by

∀f ∈ Rn, F (f) = {m ∈Mn, s.t. f /∈ Sm} ,

and the set of true hypotheses by T (f) = Mn \ F (f). A multiple test Rα is a
data-driven subset ofMn of rejected hypotheses whose aim is to infer the set of false
hypotheses.
In the following, we use the family-wise error rate FWER as a measure the first kind
error of a multiple test. It is defined by

FWER(Rα) = sup
f∈Rn

Pf (Rα ∩ T (f) 6= ∅) ,

We seek for multiple tests such that FWER(Rα) ≤ α, that is we want to be sure
that, except on a set with prescribed probability, all rejected assumptions are false.
An elementary way to achieve this goal is to set Rα = {m ∈Mn, s.t. φm,αm = 1}.
Actually, these tests satisfy

FWER(Rα) = sup
f∈Rn

Ef

[
sup

m∈T (f)

φm,αm

]
,

and the condition FWER(Rα) ≤ α reminds the condition (3.1) required to ensure a
level α for the aggregated test. Actually, one can check for check for example that
the multiple tests derived from Bonferroni procedures or Baraud, Huet and Laurent
correction of the level satisfy FWER(Rα) ≤ α, the proof is quite elementary.
A refined strategy, still controlling the FWER is given by the sequential Holm’s
strategy [Hol79]. Denote by R0

α = ∅ and define recursively

∀k ≥ 0, Rk+1
α = Rk

α ∪
{
m ∈Mn, s.t. φm, α

|Mn|−|Rkα|
= 1

}
,

the set of hypotheses that are rejected using a Bonferroni procedure on the remaining
hypotheses after k-steps. The sequence converges in at most |Mn| steps and the
final multiple test of Holm is defined by Rα = R

|Mn|
α . Baraud, Laurent and Huet

initial collection of rejected assumptions can also be incremented using a recursive
procedure. The resulting test is the same as the one built with a min−p procedure
(see [DvdL07] for example). Both recursive algorithms are step-down procedures
and their FWER is controlled by α thanks to [GS10, Theorem 1]. The assumption
called “one step" in this last theorem is verified using the analogy with the control
(3.1) of the level of an aggregated test.
The take-home message here is that both aggregated tests and multiple tests are
based on elementary tests (φm,α) of a collection of hypotheses Hm, m ∈ Mn. They
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differ in their objectives, while aggregated tests are only concerned with one assump-
tion H0 included in the intersection ∩m∈MnHm, multiple tests are concerned with
the collection of all false hypotheses {Hm,m ∈ F (f)}. The consequence is that an
aggregated test only requires that the first step R1

α = {m ∈Mn, s.t. φm,αm = 1} is
non-empty to reject to reject H0. However, using the step-down strategy of [GS10],
one can often use the calibration of the level for an aggregation strategy to build
multiple tests R|Mn|

α , still controlling the FWER, and rejecting more assumptions
than R1

α.

3.4 Weak family-wise separation rates for multiple tests

Let us now consider a multiple test Rα and the aggregated test Φ(Rα) = 1Rα 6=∅
derived from it. Given β in (0, 1) and S ⊂ Rn, the uniform separation rate of Φ(Rα)

over S with prescribed second kind error rate β and distance d is SRβ
d

(
Φ(Rα), S,∩m∈MnSm

)
.

This quantity is closely related to the maximin optimality criterion of Romano,
Shaikh and Wolf [RSW11, Theorem 4.1] which consists in maximizing the power

inf
f∈S⊂Rn\

⋂
m∈Mn

Sm
Pf (Rα 6= ∅) .

The difference is that we look for a minimal distance r between f (in S) and
∩m∈MnSm which guarantees a fixed minimal level of power (1 − β) for a given
procedure. This notion of minimal distance r is considered as a rate of testing (in
the spirit of the rates of estimation) used to compare the performance of two testing
procedures.
We could naturally define the weak family-wise separation rate as SRβ

d

(
Φ(Rα), S,∩m∈MnSm

)
.

However, in this second kind error criterion, only alternatives which deviate from
the intersection ∩m∈MnSm are taken into account. Considering such a definition
would thus amount to confuse multiple tests with their corresponding aggregated
tests, seeing all the tested hypotheses as only intermediate hypotheses to an ulti-
mate one: f ∈ ∩m∈MnSm. This would depart from the multiple testing philosophy,
where each tested hypothesis has its own significance and has to be taken into ac-
count by itself. To address this requirement, instead of alternatives f in S such
that “d (f,∩m∈MnSm ) ≥ r" (for r > 0), we consider alternatives f in S such that
“∃m ∈ Mn, d (f, Sm ) ≥ r". This leads us to consider the set of false hypotheses
under Pf at least at distance r from f , that is

Fr(f) = {m ∈Mn, d(f, Sm) ≥ r} .

Note that Fr(f) 6= ∅ implies that d(f,∩m∈MnSm) ≥ r but the converse is false, see
Figure 3.1. We can now introduce the following definition.
Given β in (0, 1) and a class S ⊂ Rn, the weak family-wise separation rate of a
multiple test Rα over S with prescribed second kind error rate β is defined by

wFWSRβ
d (Rα, S ) = inf

{
r > 0, sup

f∈S, Fr(f)6=∅
Pf (Rα = ∅) ≤ β

}
.

This is the minimal radius r such that, except on a set with prescribed probability,
if f ∈ S departs from at least one assumption by a distance r, one assumption
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is rejected. This notion of weak family-wise separation rate is related to uniform
separation rate thanks to the following result see [2, Proposition 3].

Proposition 2. For any subset S of Rn and β in (0, 1),

wFWSRβ
d (Rα, S ) ≤ SRβ

d

(
Φ(Rα), S,

⋂
m∈Mn

Sm

)
,

with an equality if the collection of hypotheses (Sm)m∈Mn and the distance d satisfy

∀r > 0,∀f ∈ Rn, [Fr(f) 6= ∅ ] if and only if

[
d

(
f,

⋂
m∈Mn

Sm

)
≥ r

]
. (3.2)

The necessity of condition (3.2) can be understood in the example drawn in Fig-
ure 3.1. Point c is a possible value for f in SRβ

d

(
Φ(Rα), S,∩m∈MnSm

)
but not

H

1

2

H

0H r

a
b

c

d

Figure 3.1: Visualization of a multiple testing problem with two hypotheses H1 and H2 represented
with darker colors. Their r-neighborhoods are of lighter shade. The r-neighborhood of S1 ∩ S2

is hatched. The hypothesis H0 is strictly included in H1 ∩ H2. Point a corresponds to a f such
that T (f) = {1} and F (f) = Fr(f) = {2}. Point b corresponds to a f such that T (f) = ∅ and
F (f) = Fr(f) = {1, 2}. Point c corresponds to a f such that T (f) = ∅, F (f) = {1, 2}, Fr(f) = ∅
but d(f, S1 ∩ S2) ≥ r. Point d corresponds to a f such that T (f) = {1, 2} and F (f) = Fr(f) = ∅
but f 6∈ S0.

in wFWSRβ
d (Rα, S ). The alternative set considered for wFWSRβ

d (Rα, S ) is thus
strictly included in the alternatives considered for SRβ

d

(
Φ(Rα), S,∩m∈MnSm

)
, it

may therefore be strictly more difficult to control in this example the separation
rate in the latter case.
Condition (3.2) is satisfied under different classical assumptions on the collection of
hypotheses. For example, if the collection (Sm)m∈Mn is closed (under intersection),
that is

∀(m,m′) ∈M2
n, Sm ∩ Sm′ ∈ (Sm)m∈Mn ,
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then condition (3.2) is always satisfied. For instance, the collection (Sm)m∈{1,...,n},
where Sn = Rn and, for all m ∈ {1, . . . , n− 1},

Sm = {f ∈ Rn, s.t. fm+1 = . . . = fn = 0}

is closed and therefore condition (3.2) is satisfied.
Furthermore, consider the collection (S ′m)m∈{1,...,n}, where, for all m ∈ {1, . . . , n},

S ′m = {f ∈ Rn, s.t. fm = 0} , (which is not closed) .

It satisfies condition (3.2) with the supremum distance d = d∞, that is

d∞(f, g) = max
i=1,...,n

|fi − gi| , (3.3)

but not with any other distance ds for s ≥ 1 defined by

ds(f, g) =

(
n∑
i=1

|fi − gi|s
)1/s

. (3.4)

In this kind of examples, the following more general result can be used.

Proposition 3. [2, Proposition 4] Let d be a distance on Rn, and S be a subset of
Rn. If there exists some distance d′ on Rn such that:

∀f ∈ Rn, ∀r > 0, [Fr(f) 6= ∅ ] if and only if

[
d′

(
f,

⋂
m∈Mn

Sm

)
≥ r

]
,

(3.5)
then for every β ∈ (0, 1),

wFWSRβ
d (Rα, S ) = SRβ

d′

(
Φ(Rα), S,

⋂
m∈Mn

Sm

)
.

This result applies to the collection (S ′m, m = 1, ..., n) and any distance d, for
example any distance ds (s ≥ 1) defined by (3.4), such that condition (3.5) is satisfied
with d′ = d∞. Thus, for every multiple test Rα of (S ′m, m = 1, ..., n), every subset
S of Rn, and every distance d,

wFWSRβ
d (Rα, S ) = SRβ

d∞

(
Φ(Rα), S, {0}

)
.

3.5 (Strong) Separation rates for multiple testing

We now introduce the following stronger notion of family-wise separation rate.
Given β in (0, 1) and S ⊂ Rn, the family-wise separation rate of a multiple test Rα

over S with prescribed second kind error rate β is defined by

FWSRβ
d (Rα, S ) = inf

{
r > 0, sup

f∈S
Pf (Fr(f) ∩ (Mn \Rα) 6= ∅) ≤ β

}
.

This is the minimal radius r ensuring that, except on an event with prescribed
probability, all false assumptions are rejected. The family-wise separation rate is
a stronger quality criterion than the weak family-wise separation rate, which is
formalized in the following result.
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Proposition 4. [2, Proposition 5] For any distance d, any subset S of Rn, and any
β in (0, 1),

wFWSRβ
d (Rα, S ) ≤ FWSRβ

d (Rα, S ) .

By definition, for fixed S, FWSRβ
d (Rα, S ) is monotonous in Rα, i.e. if Rα ⊂ R′α

a.s.,
FWSRβ

d (R′α, S ) ≤ FWSRβ
d (Rα, S ) . (3.6)

In particular, using the step-down procedure instead of its first step improves the per-
formances of a multiple test. Likewise, for fixed Rα, FWSRβ

d (Rα, S ) is monotonous
in S: if S ⊂ S ′ then FWSRβ

d (Rα, S ) ≤ FWSRβ
d (Rα, S

′ ) . In words, reducing the
set of alternatives improves the performances of any multiple test. Finally, remark
that wFWSR has the same properties of monotonicity.

This stronger notion of separation rates is used to define a minimax approach for
multiple tests.
Given α and β in (0, 1), S ⊂ Rn, the minimax family-wise separation rate over S
with prescribed FWER α and prescribed second kind error rate β is defined by

mFWSRα,β
d (S ) = inf

Rα
FWSRβ

d (Rα, S ) ,

where the infimum is taken over all possible multiple tests with a FWER controlled
by α. A multiple test Rα, whose FWER is controlled by α, is called minimax over
S if there exists Cα,β such that FWSRβ

d (Rα, S ) ≤ Cα,βmFWSRα,β
d (S ). It is called

adaptive in the minimax sense over a collection S of subsets S if it is simultaneously
minimax over all S ∈ S, without knowing in advance the S to which f belongs.
From the monotonicity properties of FWSRβ

d , we deduce that mFWSRα,β
d is non

decreasing: if S ⊂ S ′ then mFWSRα,β
d (S ) ≤ mFWSRα,β

d (S ′ ) . Furthermore, when
(Hm)m∈Mn is reduced to a single hypothesis H0 : f ∈ S0, that is if all (Sm)m∈Mn =
{S0}, one has that for any multiple test Rα and any subset S of Rn,{

wFWER (Rα ) = FWER (Rα ) = ER
(

Φ(Rα), S0

)
,

wFWSRβ
d (Rα, S ) = FWSRβ

d (Rα, S ) = SRβ
d

(
Φ(Rα), S, S0

)
.

Conversely, for any single test Φ of H0 against the alternative H1 : f ∈ S, one can
build R

({
Φ
})

= H0 if Φ = 1 and R
({

Φ
})

= ∅ otherwise. One can then check
that{

ER
(

Φ, S0

)
= wFWER

(
R
({

Φ
}))

= FWER
(
R
({

Φ
}))

,

SRβ
d

(
Φ, S, S0

)
= wFWSRβ

d

(
R
({

Φ
})

, S
)

= FWSRβ
d

(
R
({

Φ
})

, S
)
.

It is also easy to prove that when (Hm)m∈Mn is reduced to a single hypothesis
H0 : f ∈ S0, for any subset S of Rn,

mFWSRα,β
d (S ) = mSRα,β

d (S, S0 ) .

Our minimax approach for multiple tests is thus a generalization of the classical
minimax theory for single hypothesis tests. Even when (Hm)m∈Mn is not reduced
to a single hypothesis H0, both theories have close links established in the following
result.
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Theorem 5. [2, Theorem 6] Let d be a distance on Rn and let S ⊂ Rn. If there
exists some distance d′ on Rn satisfying (3.5), then for every β in (0, 1),

mFWSRα,β
d (S ) ≥ mSRα,β

d′

(
S,

⋂
m∈Mn

Hm

)
. (3.7)

The main role of this result is to provide lower bounds for the minimax family-wise
separation rate using the abundant literature on classical minimax testing.

3.6 Some examples

These lower bounds may be tight as shown by the following example. For any
f ∈ Rn, define |f |0 = | {i ∈ {1, . . . , n} , s.t. fi 6= 0} and, for any k ∈ {0, . . . , n},

Sk = {f ∈ Rn, |f |0 ≤ k} . (3.8)

Baraud [Bar02] proved that

mSRα,β
d2

(Sk, {0}) ≥ σ

(
k ln

(
1 +

n

k2
∨
√

n

k2

))1/2

. (3.9)

Moreover, he proved that this lower bound is tight by considering an aggregation of
tests of the hypotheses

Hm : f ∈ Sm = {f ∈ Rn, s.t. fm+1 = . . . = fn = 0} , (3.10)

for all m ∈ {1, . . . , n}.

Theorem 6. [2, Theorem 9] Given α in (0, 1), there exists a multiple tests Rα of
(Hm)m∈{1,...,n}, where Hm is defined in (3.10) such that FWER(Rα) ≤ α and for
any k in {1, . . . , n}, β in (0, 0.5),

FWSRβ
d2

(Rα, Sk ) ≤ σ
√
k
(√

2 ln(n/α) +
√
−2 ln(2β)

)
.

Therefore, for k ≈ nγ for some γ ∈ (0, 1/2) the lower bound in Theorem 5 is tight.
Moreover, if (3.2) holds, for any subset S of Rn and any β in (0, 1),

mFWSRα,β
d (S ) ≥ mSRα,β

d

(
S,

⋂
m∈Mn

Hm

)
. (3.11)

In words, under the assumption (3.2) that makes possible the comparison of alterna-
tives, testing multiple hypotheses is more difficult than testing a single hypothesis.
It is however not surprising that, when condition (3.2) fails, the inequality (3.11)
may not hold. Actually, consider the set of assumptions Hm : f ∈ S ′m, where

S ′m = {f ∈ Rn, s.t. fm = 0} , (3.12)

for all m ∈ {1, . . . , n}. Then following result holds.
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Theorem 7. [2, Theorem 7] For any α in (0, 1), there exists a multiple test Rα of
(Hm)m∈{1,...,n} where Hm : f ∈ S ′m, with S ′m defined in (3.12) such that FWER(Rα) ≤
α and, for all k ∈ {1, . . . , n}, and β ∈ (0, 1),

FWSRβ
d2

(Rα, Sk ) ≤ σ

(√
2 ln

(
k

2β

)
+

√
2 ln

( n
α

))
.

Therefore, the minimax separation rate for the multiple tests problem is far smaller
than the corresponding separation rate when k ≈ nγ for γ ∈ (0, 1/2). Remarking
that

mSRα,β
d∞

(Sk, {0}) = mSRα,β
d∞

(S1, {0}) = mSRα,β
d2

(S1, {0}) ,

Baraud’s bound (3.9) proves that

mSRα,β
d∞

(Sk, {0}) ≥ σ
√

ln(1 + n), (3.13)

Hence, by Theorem 5, the rate σ
√

log(1 + n) in Theorem 7 is minimax.

One can use in Theorems 6 and 7 the multiple tests based on Bonferroni procedure,
which is thus minimax in these very basic Gaussian regression frameworks. This
result, that is a bit disappointing, is mainly due to the independence of the p-values
of the individual tests of Hm : f ∈ S ′m. We also considered in [2] another Gaussian
regression model, where p-values are roughly dependent, to show that Bonferroni
procedures are clearly suboptimal from the minimax point of view in this context,
while min-p procedures are proved to be adaptive in the minimax sense. The strong
dependence structure enabled us to use again known results in the classical minimax
theory for single hypothesis tests.
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Chapter 4

Bradley-Terry model in random
environment

I would like to conclude these notes by presenting an article recently submitted
and written with my colleagues in Nice R. Diel and R. Chetrite [15]. We study a
question of probabilistic nature on the Bradley-Terry model, but the probabilistic
tools involved in many proofs are quite common in statistics in general and in model
selection in particular. For example, we repeatedly use concentration inequalities
and controls of the supremum of empirical processes.

4.1 Position of the problem

Paired comparisons is a general framework used in various applications such as sport
competitions, chess tournaments, comparisons of medical treatments. It is at the
core of the estimation by tests theory of Birgé [Bir06a] and used by Baraud [Bar11]
to study estimator selection in general frameworks.
The Bradley-Terry model is a toy model of paired comparisons. A set of N players
(teams, treatments, ... ) called 1, . . . , N face each other once by pairs with inde-
pendent outcomes. When i faces j, the result is described by a Bernoulli random
variable Xi,j that is equal to 1 when i beats j, and of course, Xj,i = 1−Xi,j. Each
player has a value Vi > 0 modeling its “strength" or its “merit" that is used to define

∀1 ≤ i < j ≤ N, P (Xi,j = 1|V1, . . . , VN ) =
Vi

Vi + Vj
.

Finally, the score Si =
∑N

j=1,j 6=iXi,j of each player i is used to define its rank at the
end of the championship, for example, a player iN such that SiN = maxi∈{1,...,N } Si is
called a winner. The vector VN

1 = (V1, . . . , VN) is a random vector whose distribution
is described as follows. Let UN

1 = (U1, . . . , UN) be an i.i.d. sample and for any
i ∈ {1, . . . , N }, let Vi = U(i) be the i-th order statistic of UN

1 .
This model has been introduced by Zermelo [Zer29] and rediscovered independently
by Bradley and Terry [BT52]. It was later generalized to allow ties ([Dav70, RK67])
or to incorporate within-pair order effects ([DB77]). Despite its simplicity, it has
been widely used in applications for example to model sport tournaments, reliability
problems, ranking scientific journals,. . . (see [Cat12b] for a recent overview). The
problem of estimating the strength in the Bradley-Terry models has also been widely
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studied, see for example [Dav63, HT98, SY99, Hun04, GJ05, YYX12] and references
therein.
Nevertheless, the Bradley-Terry model has rarely been associated to random envi-
ronment (see however [SR09]) and, to the best of our knowledge, has never been
studied mathematically in this context. The random environment seems however
natural as it allows to manage the heterogeneity of strengths of players globally,
without having to look at each one specifically. It is a method already used fruit-
fully in other areas such as continuous or discrete random walks (see [Zei12] or
[DR14] for recent presentations). Moreover, the inference of the distribution of the
strength might be much simpler than the inference of all strengths (one can imagine
inference among a one or two parameters family of distributions), and prediction of
statistics using only this distribution might therefore be simplified by the introduc-
tion of the random media. Our problem here is to understand how the choice of
the distribution for the strengths of players influences the ranking of the players. In
particular, does a player with the highest strength end up with the highest score?
And if not, what is the number of potential winners?
Hereafter, let U denote a copy of U1 independent of UN

1 , let Q denote the tail
distribution function of U , that is Q(t) = P (U > t) for all t > 0 and suppQ its
support, let P denote the probability of an event with respect to the randomness of
VN

1 and (Xi,j)1≤i<j≤N , it called the annealed probability. Let PV denote the prob-
ability measure given VN

1 , that is P
(
· |VN

1

)
, it is called the quenched probability.

In particular,

∀1 ≤ i < j ≤ N, PV (Xi,j = 1) =
Vi

Vi + Vj
.

We are interested in the asymptotic probability that the “best" player wins, meaning
that the player N with the largest strength VN ends up with the best score SN .

4.2 Main results

The first theorem is gives conditions under which this (annealed) probability is
asymptotically 1 when the number of players N →∞.

Theorem 8. Assume that there exist β ∈ (0, 1/2) and x0 > 0 in the interior of
suppQ such that Q1/2−β is convex on [x0,∞) and that E [U2 ] <∞. Then,

P (“the player N wins") ≥ P
(
SN > max

1≤i≤N−1
Si

)
−−−→
N→∞

1 .

When suppQ = R+, the convexity condition is not very restrictive as it is satisfied
by standard continuous distributions with tails function Q(x) ' e−x

a , Q(x) ' x−b

or Q(x) ' (log x)−c. The moment condition E [U2 ] < ∞ is more restrictive but
still allows natural distributions of the merits such as exponential or exponential of
Gaussian. It is a technical convenience to control the explosion of maximal strengths
allowing to avoid a lot of tedious computations.

When suppQ is compact, we can always assume that suppQ ⊂ [0, 1] and 1 ∈
supp(Q), since the distribution of (Xi,j)1≤i<j≤N given VN

1 is invariant by multipli-
cation of the merits by a common λ > 0. From now on, we make this assumption.
The moment condition is always satisfied and the only condition is the convexity
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one, which is natural to forbid an accumulation of good players with strength close
to 1.
Let us investigate the necessity of the convexity condition. Suppose that Q(1−u) ∼
uα when u → 0, then the convexity condition holds only if α > 2. To check the
tightness of the bound 2, we introduce the following assumption.
Assumption : There exists α ∈ [0, 2) such that,

logQ(1− u) = α log(u) + o(log u) when u→ 0. (A)

Notice that some standard distributions satisfy Assumption (A), for example the
uniform distribution satisfies (A) with α = 1, the Arcsine distribution satisfies it
with α = 1/2 and any Beta distribution B(a, b) satisfies it as long as the parameter
b < 2 with α = b. The next quenched result studies, under Assumption (A), the
size of the set of possible winners.

Theorem 9. For any r ∈ R+, let Gr = {dN − re+ 1, . . . , N } denote the set of the
brc best players. If (A) holds, for any 0 < γ < 1− α/2 then, P almost-surely,

PV (“none of the Nγ best players wins") = PV
(

max
i∈GNγ

Si < max
i∈GN

Si

)
→ 1 . (4.1)

For any γ > 1− α/2 then, P almost-surely,

PV (“one of the Nγ best players wins") = PV
(

max
i/∈GNγ

Si < max
i∈GN

Si

)
→ 1 . (4.2)

The first part of the theorem shows that, when Q(1−u) ∼ uα, with α < 2, then none
of Nγ “best" players, for any γ ∈ (0, 1 − α/2) wins the competition. In particular,
the best one does not win either. In this sense, the bound 2 in the asymptotic
development of Q around 1 is tight in Theorem 8.
The second result (4.2) in Theorem 9 shows the sharpness of the bound 1− α/2 in
(4.1). Informally, this theorem shows that, under Assumption (A), N1−α/2 players
can be champion.
Under Assumption (A), the best player does not win the championship. Therefore,
we may wonder what strength vN+1 an additional tagged player N + 1 should have
to win the competition against players distributed according to Q. The following
quenched result discusses the asymptotic probability that player N + 1 wins as a
function of its strength vN+1.

Theorem 10. Assume (A) and let

ϑU = E
[

U

(U + 1)2

]
and εN =

√
2− α
ϑU

logN

N
.

If lim infN→∞
vN+1−1

εN
> 1, then, P-almost surely

PV (“player N + 1 wins") ≥ PV
(
SN+1 > 1 + max

i=1,...,N
Si

)
→ 1 .

If lim supN→∞
vN+1−1

εN
< 1, then, P-almost surely

PV (“player N + 1 does not win") ≥ PV
(
SN+1 < max

i=1,...,N
Si

)
→ 1 .
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This result shows a cut-off phenomenon around 1+εN for the asymptotic probability
that player N + 1 wins.
It is interesting to notice that, for a given α, εN is a non increasing function of ϑU .
Therefore, when U is stochastically dominated by U ′, that is P(U ≥ a) ≤ P(U ′ ≥ a)
for any a ∈ [0, 1], we have ϑU ≤ ϑU ′ , hence εUN ≥ εU

′
N . In other words, it is easier for

the tagged player to win against opponents distributed as U ′ than as U even if the
latter has a weaker mean than the former. This result may seem counter-intuitive
at first sight. In the following example, it is easier for the additional player to win
the competition in case 1 than in case 2, since both distributions satisfy (A) with
α = 0.

1. All players in {1, . . . , N } have strength 1.

2. The players in {1, . . . , N } have strength 1 with probability 1/2 and strength
1/2 with probability 1/2.

Actually the score of the tagged player is smaller when he faces stronger opponents
as expected, but so is the best score of the other good players.
Remark that Theorem 8 is an annealed result while Theorems 9 and 10 are quenched.
Indeed, the first theorem requires to control precisely the difference of strengths be-
tween the best player and the others when all the players are identically distributed,
this seems complicated in the quenched case. This problem does not appear in
the other results: for example, in Theorem 10, the strength of the tagged player is
deterministic and the strengths of others are bounded by 1.

4.3 Main proofs ideas

To conclude, let us briefly present the main ideas underlying our proofs. To avoid
redundancy, let us focus on the proof of Theorem 8. Let ZN = maxi∈{1,...,N−1} Si.
Our strategy is to build random bounds sN and zN depending only on VN

1 such that,

P
(
SN ≥ sN

)
→ 1, P

(
ZN ≤ zN

)
→ 1 and P

(
sN > zN

)
→ 1 . (4.3)

It follows that,

P (SN > ZN ) ≥ P
(
SN ≥ sN , ZN ≤ zN , sN > zN

)
≥ 1− P

(
SN < sN

)
− P

(
ZN > zN

)
− P

(
sN < zN

)
→ 1 .

The construction of sN and zN is obtained thanks to concentration inequalities.
The concentration of SN is easy, the tricky part is to build zN . First, we use the
bounded difference inequality to concentrate ZN around its expectation. To apply
this inequality, we have to decompose the set of random variables (Xi,j)1≤i<j≤N into
N groups such that, when we change the value of one group, the score of the best
player does not change by more than one victory. This decomposition is based on
the round-robin algorithm. It may be funny to remark that this decomposition,
which is mathematically a bit tricky, is on the other hand totally common in sport
tournaments. For example, in European soccer championships, a group corresponds
to the matchs played in a week. Next, we have to bound above the expectation
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EV [ZN ]. First we use the argument used by Pisier [Pis83]

∀λ > 0, EV [ZN ] ≤ 1

λ
logEV

[
eλZN

]
≤ 1

λ

N−1∑
k=1

logEV
[
eλSk

]
.

Then we compute a sharp bound on the minimal value of a potential winner, giving
finally a bound on the cardinality of the set of potential winners under Assumption
(A). These bounds are used to cut the set {1, . . . , N − 1} in two parts, the set of
“potential winners" P with a controlled cardinality and the complementary P c =
{1, . . . , N − 1} \ P where each player has a controlled maximal force. These are
used to cut the sum

N−1∑
k=1

logEV
[
eλSk

]
=
∑
k∈P

logEV
[
eλSk

]
+
∑
k∈P c

logEV
[
eλSk

]
.

The first sum is bounded by |P | logEV
[
eλSN−1

]
and the second one byN logEV

[
eλSNPc

]
,

where NP c = max {P c}. This last sum is proved negligible. The first term is then
handled by an analysis of the asymptotic of VN−1 and VN , using tools for extreme
values of an i.i.d. sample.
The bound on the minimal strength of a winner which is roughly equal to (1 −
N−1/2)VN is actually a by-product of our results which is not stressed in our theo-
rems. It might however be of interest in practical situations (a medical treatment
champion is at worst (1−N−1/2) times as efficient as the actual best one). It is also
very important in related pairwise comparison problems. For example, in estimation
by tests, it is the central quantity to derive oracle inequalities.
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