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Chapter 1

Ridge estimators

We start these lectures with a particular learning problem in high dimension
that we solve using generic arguments. The proof can easily be adapted
to more involved problems, see in particular the problem at the end of the
chapter, and motivates the development of probabilistic tools in the following
chapters.

1.1 Setting

Consider the high dimensional Gaussian linear regression setting where we
observe i.i.d. couples (xi, yi), i ∈ {1, . . . , n}, distributed as (x, y) and such
that

y = 〈θ∗, x〉+ σξ .

In all the chapter, we assume that x, θ∗ ∈ Rd = Θ, y, σ, ξ ∈ R, with d
possibly much larger than n. The parameters θ∗ and σ are fixed, while
x, y, ξ are random and satisfy x ∼ N(0,Σ), ξ ∼ N(0, 1) are independent.
We will also write X ∼ N(0, I) a standard Gaussian vector in Rd such that
x = Σ1/2X.

Given λ > 0, the ridge estimator is defined as

θ̂λ ∈ argminθ∈Θ Pn`θ + λ‖θ‖22 ,

where the loss is the square loss `θ(x, y) = (y − 〈x, θ〉)2 and the empirical
means are denoted Png = n−1

∑n
i=1 g(xi, yi) for any function g taking values

in a convex set C.
The goal of our analysis is to bound the excess risk of θ̂λ, P (`θ̂λ − `θ∗),

where Pg = Ex,y[g(x, y)], so, if g is measurable with respect to Dn =
{(xi, yi), i = 1, . . . , n}, Pg = E[g(x, y)|Dn]. To state the result, we introduce
the effective dimension

Dλ = Tr(Σ(Σ + λI)−1) =
d∑
i=1

λi
λi + λ

,

7



8 CHAPTER 1. RIDGE ESTIMATORS

where λ1 > . . . > λd > 0 are the eigenvalues of Σ. Note that the effective
dimension always satisfies Dλ 6 d, but the inequality can be pessimistic:
It also holds that Dλ 6 Tr(Σ)/λ for any λ > 0, so Dλ can be finite even
if d = ∞ provided that Tr(Σ) =

∑+∞
i=1 λi < ∞. We will also repeatedly

use the notation ‖u‖A, defined for any vector u and positive semi-definite
matrix A, by ‖u‖A =

√
uTAu = ‖A1/2u‖2 =

√
〈u,Au〉. When A is non

singular, Cauchy-Schwarz inequality shows that

〈u, v〉 =
〈
A1/2u,A−1/2v

〉
6 ‖u‖A‖v‖A−1 .

We prove the following result.

Theorem 1. Assume that x ∼ N(0,Σ) and ξ ∼ N(0, 1) are independent,
then, if Dλ 6 n/100, the Ridge regressor θ̂λ satisfies, for any z ∈ (0, n/100),
with probability 1− 2 exp(−z),

P (`θ̂λ − `θ∗) 6 C

(
σ2Dλ + z

n
+ λ2‖θ∗‖2Σ−1

)
.

One can make a few remarks to appreciate this result:

1. The complexity term can be bounded from above, for any k ∈ {1, . . . , d},
by

Dλ 6 k +
1

λ

d∑
i=k+1

λi .

For example, if the spectrum satisfies λi � i−α for some α > 1, we see
that this bound is optimized for k � λ−1/α and gives Dλ . λ−1/α

2. The regularization term can be written using the decomposition of
θ∗ onto the orthonormal basis of eigenvectors of Σ: writing ui these
vectors, we write θ∗ =

∑d
i=1 θ

∗
i ui and

‖θ∗‖2Σ−1 =
d∑
i=1

(θ∗i )
2

λi
.

As expected, this term is smaller if θ∗ is well represented on the direc-
tions of Σ associated with its largest eigenvalues: In the extreme case
where

θ∗ = θ∗1u1, ‖θ∗‖2Σ−1 �
‖θ∗‖22
λ1

,

while if

θ∗ = θ∗dud, ‖θ∗‖2Σ−1 �
‖θ∗‖22
λd

.
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3. Combining these two bounds, we get an upper bound on the Ridge
estimator equal to

λ−1/α

n
+ λ2‖θ∗‖2Σ−1 ,

where α > 1 depends on the spectrum of Σ, it is minimal for λ =

(1/‖θ∗‖2Σ−1n)α/(2α+1) and gives the rate ‖θ∗‖2/(2α+1)
Σ−1 n−2α/(2α+1).

In the remaining of the chapter, we prove the main theorem. The proof
is decomposed to be easily generalized to other frameworks.

1.2 Localization using deterministic arguments

The purpose of this section is to show that it is sufficient to bound localized
linear and quadratic processes to bound the excess risk of θ̂λ. To proceed
with this step, we do not use any probabilistic argument.

Step 1: If there exists an ellipsöıd C centered in θ∗ such that any θ /∈ C
satisfies

Pn`θ + λ‖θ‖22 > Pn`θ∗ + λ‖θ∗‖22 ,

then θ̂λ ∈ C.
This elementary remark follows directly from the definition of θ̂λ. Indeed,

Pn`θ̂λ + λ‖θ̂λ‖22 6 Pn`θ∗ + λ‖θ∗‖22 .

Therefore, by definition of C, θ̂λ cannot belong to the complementary of C.

Remark 2. Step 1 would be true for any form of the set C. The focus on
ellipsoids will become clear later in Step 3.

Step 2: If all θ in the frontier ∂C satisfy

ϕ(θ) = Pn`θ + λ‖θ‖22 − (Pn`θ∗ + λ‖θ∗‖22) > 0 , (1.1)

then θ̂λ ∈ C.
This second elementary remark follows from the convexity of square loss.

As ϕ is strictly convex and non negative on ∂C. Therefore, if θ /∈ C, there
exists α ∈ (0, 1) such that θ̄ = αθ + (1− α)θ∗ ∈ [θ∗, θ] ∩ ∂C. Thus, by strict
convexity,

0 6 ϕ(θ̄) < αϕ(θ) + (1− α)ϕ(θ∗) ,

that is

0 < α(Pn`θ + λ‖θ‖22 − (Pn`θ∗ + λ‖θ∗‖22)) .
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As this is true for any θ /∈ C, the conclusion follows from Step 1.

Discussion: Step 2 would be true for any convex set C. In the following,
we focus on the function ϕ defined in Eq (1.1) and our goal now is to choose
C such that ϕ(θ) > 0 on ∂C. In particular, it will become clear why C is
chosen as an ellipsoid, and which ellipsoid we should choose.

Step 3: The following decomposition of ϕ holds: Let Σn = Pn(xxT ) denote
the matrix of empirical second moments of the design x,

ϕ(θ) =‖θ − θ∗‖2Σn+λI + 2σ
〈
Pn(ξX),Σ1/2(θ − θ∗)

〉
+ 2λ 〈θ − θ∗, θ∗〉 .

(1.2)

The key to prove this bound is the following simple quadratic/multiplier
decomposition of the square loss:

`θ(x, y)− `θ∗(x, y) = (〈x, θ − θ∗〉+ σξ)2 − (σξ)2

= 2σ 〈ξx, θ − θ∗〉+ 〈x, θ − θ∗〉2 ,

Writing x = Σ1/2X, we get

`θ(x, y)− `θ∗(x, y) = 2σ
〈
ξX,Σ1/2(θ − θ∗)

〉
+
〈
(xxT )(θ − θ∗), θ − θ∗

〉
.

Thus

Pn(`θ − `θ∗) = 2σ
〈
Pn(ξX),Σ1/2(θ − θ∗)

〉
+ 〈Σn(θ − θ∗), θ − θ∗〉 .

Together with the bound

λ(‖θ‖22 − ‖θ∗‖22) = 〈λI(θ − θ∗), θ − θ∗〉+ 2λ 〈θ∗, θ − θ∗〉 ,

we get

ϕ(θ) = 2σ
〈
Pn(ξX),Σ1/2(θ − θ∗)

〉
+ 〈(Σn + λI)(θ − θ∗), θ − θ∗〉

+ 2λ 〈θ∗, θ − θ∗〉 .

This is equivalent to the desired conclusion.

Discussion: The decomposition given in Step 3 suggests to take for C
the ellipsoid

C = {θ ∈ Rd : ‖θ − θ∗‖2Σ+λI 6 r2} , (1.3)

where r is an hyperparameter that remains to be calibrated. Indeed, this
choice makes the positive term ‖θ − θ∗‖2Σn+λI in the decomposition of ϕ(θ)
as large as possible, provided that the random matrix Σn +λI is close to its
expected value Σ + λI.

Then, to conclude, we have two remaining tasks:

1. Bound the linear process
〈
Pn(ξX),Σ1/2(θ − θ∗)

〉
for all θ ∈ C.

2. Check that the quadratic process ‖θ−θ∗‖2Σn+λI behaves as its expected
value ‖θ − θ∗‖2Σ+λI uniformly over the frontier ∂C.
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1.3 Bounding the linear process

In this section, we focus on obtaining upper bounds on the supremum of the
linear process

sup
θ∈C

〈
Pn(ξX),Σ1/2(θ − θ∗)

〉
.

Let us reparametrize the problem to simplify notations and write

T = {t = Σ1/2(θ − θ∗)/r, θ ∈ C} ,

so we have

sup
θ∈C

〈
Pn(ξX),Σ1/2(θ − θ∗)

〉
= r sup

t∈T
〈Pn(ξX), t〉 .

We decompose this control into elementary steps.

Control for a single t in the unit sphere. The purpose of this para-
graph is to bound the Laplace transform of 〈Pn(ξX), t〉, for any t in the
unit sphere. Fix i ∈ {1, . . . , n} and t ∈ Rd such that ‖t‖2 = 1, we start
by computing the Laplace transform of 〈ξiXi, t〉. For any s ∈ R, we have
〈X, t〉 ∼ N(0, 1) is independent of ξi, so

E[exp(sξi 〈Xi, t〉)|ξi] = exp

(
s2ξ2

i

2

)
.

We deduce that, for any |s| < 1/
√

2,

E[exp(sξi 〈Xi, t〉)] =

∫
exp

(
−y2(1− s2)

2

)
dy√
2π

=
1√

1− s2

=

(
1 +

s2

1− s2

)1/2

6 exp
(
s2
)
.

By independence, we deduce that, for any |s| < n/
√

2,

E[exp(s 〈Pn(ξX), t〉)] =
n∏
i=1

E
[

exp

(
s

n
ξi 〈Xi, t〉

)]
6 exp

(
s2

n

)
.

As we shall see in Chapter 3, it is possible to derive directly from this up-
per bound on the Laplace transform a concentration bound for 〈Pn(ξX), t〉.
We do not pursue this path here and use a more involved consequence of
this bound on the Laplace transform given in Chapter 7, that directly allows
to derive from a uniform deviation bound on supt∈T 〈Pn(ξX), t〉.
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From a single t to uniform bounds over ellipsoids In Chapter 7 at
the end of the lecture notes, we develop the PAC-Bayesian method which
allows to deduce uniform upper bounds over processes from bounds on the
Laplace transform for a single t. The conclusion of the previous paragraph
is that the vector Pn(ξX) satisfies the sub-Gamma assumption (5.4) with
b =
√

2/n and K = 1/
√
n.

To use the results of this section, we also have to write the ellipsoid T
properly. We have

T = {t = Σ1/2(θ − θ∗)/r : ‖θ − θ∗‖2Σ+λI 6 r2}
= {t = Σ1/2u : ‖u‖2Σ+λI 6 1}
= {t : ‖(Σ + λI)1/2Σ−1/2t‖22 6 1} .

The conclusion of this is that

T = {t : ‖Γ−1/2t‖2 6 1}, with Γ = Σ(Σ + λI)−1 .

To express the result, we define, for any matrix A, its operator norm ‖A‖
and effective rank r(A) = Tr(A)/‖A‖. By the Pac-Bayesian bound (5.6),
w.p.l.t. 1− exp(−z),

sup
t∈T
〈Pn(ξX), t〉 6

√
‖Γ‖

(
4

√
r(Γ)

n
+
√

1 + z

(
4√
n
∨

3
√

2r(Γ)

n
)+

3
√

2(1 + z)

n

)
.

We can rearrange this result saying that

‖Γ‖r(Γ) = Dλ, ‖Γ‖ 6 1 ,

we deduce that

sup
t∈T
〈Pn(ξX), t〉 6 4

√
Dλ
n

+
√

1 + z

(
4√
n
∨ 3
√

2Dλ
n

)
+

3
√

2(1 + z)

n
.

Finally, we can use the assumptions stated in the theorem Dλ < n/100 and
z 6 n/100 to say that

3
√

2Dλ
n

6
3

2
√
n
,

3
√

2(1 + z)

n
6

3
√

1 + z√
50n

,

we conclude that, w.p.l.t. 1− exp(−z)

sup
t∈T
〈Pn(ξX), t〉 6 4

√
Dλ
n

+ 5

√
1 + z

n
. (1.4)
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1.4 Bounding quadratic processes

In this section, we are interested in the quadratic process. We write, for any
θ ∈ ∂C,

‖θ − θ∗‖2Σn+λI = (Pn − P )[〈x, θ − θ∗〉2] + r2

> r2

(
1− sup

t,t′∈T
tT
(
PnXX

T − I
)
t′
)
, (1.5)

where the ellipsoid T was defined in the previous section. We proceed in
two steps as in the previous section to bound this term.

Step 1: Bounding the Laplace transform. Let us first fix u and v in
the unit sphere and compute the Laplace transform of uT (XiX

T
i − I)v. We

write v = αu+ z, with α = 〈u, v〉, z = v − 〈u, v〉u ⊥ u and, for any s ∈ R,

E[exp(suT (XiX
T
i − I)v)| 〈Xi, u〉] = E[exp(s(〈Xi, u〉 〈Xi, v〉 − 〈u, v〉)| 〈Xi, u〉]

= exp(sα(〈Xi, u〉2 − 1))E[exp(s 〈Xi, u〉 〈Xi, z〉 | 〈Xi, u〉]

= exp

((
sα+

s2‖z‖2

2

)
〈Xi, u〉2 − sα

)
.

We deduce that, for any s such that |2sα+ s2‖z‖2| < 1/2,

E[exp(s
〈
XiX

T
i − Σ, uvT

〉
F

)] =
exp(−sα)√

1− 2sα− s2‖z‖2
6 exp(s2) .

As ‖z‖2 = 1− α2, we have, for any |s| < 1/6,

2sα+ s2‖z‖2 6 |s|(1 + 2α− α2) < 1/2 .

By independence, we obtain that, for any |s| < n/6,

E[exp(s
〈
Pn(XXT )− Σ, uvT

〉
F

)] =
n∏
i=1

E
[

exp

(
s

n

〈
XiX

T
i − Σ, uvT

〉
F

)]
6 exp

(
s2

n

)
.

Step 2: Uniform bounds using the PAC-Bayesian approach. As
for the linear process, we can now move from simple bounds to uniform
bounds using the Pac Bayesian approach of Chapter 7. The conclusion of
the previous paragraph is that the matrix Pn(XXT ) − I satisfies Assump-
tion (5.9) with b = 6/n and K = 1/

√
n. We will use inequality (5.10) with

EU = EV = T , the ellipsoid defined for the linear process:

T = {t : ‖Γ−1/2t‖2 6 1}, Γ = Σ(Σ + λI)−1 .
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The conclusion is that, for all z > 0, with probability 1− exp(−z),

sup
t,t′∈T

tT (Pn(XXT )− I)t′ 6 ‖Γ‖
(√

4(r(Γ) + 1 + z)

n
∨ 24(r(Γ) + 1 + z)

n

)
.

Using as in the previous section that ‖Γ‖r(Γ) = Dλ and ‖Γ‖ 6 1, we can
rearrange the terms to get

sup
t,t′∈T

tT (Pn(XXT )− I)t′ 6

(√
4(Dλ + 1 + z)

n
∨ 24(Dλ + 1 + z)

n

)
.

Now, we use the boundsDλ < n/100, z < n/100 to say that, with probability
1− exp(−n/100),

sup
t,t′∈T

tT (Pn(XXT )− I)t′ 6
1

2
.

Plugging this bound into the basic lower bound (1.5) gives the final lower
bound on the quadratic process: with probability 1− exp(−n/100), for any
θ ∈ ∂C,

‖θ − θ∗‖2Σn+λI >
r2

2
, (1.6)

1.4.1 Conclusion of the proof

To conclude the proof, we go back to (1.2). By (1.6), with probability
1− exp(−n/100), for any θ ∈ ∂C,

‖θ − θ∗‖2Σn+λI >
r2

2
,

Besides, by (1.4), with probability 1− exp(−z), for any θ ∈ ∂C,

2σ
〈
Pn(ξX),Σ1/2(θ − θ∗)

〉
> −σr

(
8

√
Dλ
n

+ 10

√
1 + z

n

)
.

Finally, we always have, by Cauchy-Schwarz inequality, for any θ ∈ ∂C,

2λ 〈θ − θ∗, θ∗〉 > −2λr‖θ∗‖Σ−1 .

Together, these three informations show that, with probability 1−exp(−z)−
exp(−n/100), for any θ ∈ ∂C,

ϕ(θ) >
r

2

(
r − σ

(
16

√
Dλ
n

+ 20

√
1 + z

n

)
− 4λ‖θ∗‖Σ−1

)
.

This last lower bound is clearly > 0 if

r∗ = σ

(
16

√
Dλ
n

+ 20

√
1 + z

n

)
+ 4λ‖θ∗‖Σ−1 .
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It follows therefore from Step 2 of Section 1.2 that, with probability 1 −
exp(−z)− exp(−n/100), θ̂λ ∈ C for r = r∗, that is, by definition of this set,
we have proved that

‖θ̂λ − θ∗‖Σ+λI 6 r∗ .

The theorem is proved as we have

P (`θ̂λ − `θ∗) = ‖θ̂λ − θ∗‖2Σ 6 ‖θ̂λ − θ∗‖2Σ+λI .

1.5 Problem

In this problem, we try to replicate the analysis we developed for linear re-
gression into the slightly more challenging problem of logistic regression. We
present typical steps that can be followed to analyse other M -estimators.
Recall that logistic regression produces a linear classifier in a high dimen-
sion setting where we observe n couples (xi, yi) independent and identically
distributed, where the couples (x, y) ∈ X × Y, with X = Rd (with possibly
d > n) and Y = {−1, 1} and where, for each θ ∈ Θ = Rd, we define the loss

`θ(x, y) = ϕ(−y 〈θ, x〉), ϕ(u) = log(1 + exp(x)) .

We analyse the estimator

θ̂λ ∈ argminθ∈Θ{Pn`θ + λ‖θ‖22} .

1. The purpose of this question is to adapt the localization argument,
the question is decomposed in two steps.

(a) Show that, if there exists a neighborhood V(θ∗) of θ∗ such that,
for all θ in the frontier ∂V(θ∗),

Pn`θ + λ‖θ‖22 > Pn`θ∗ + λ‖θ∗‖22 .

then θ̂λ ∈ V(θ∗).

(b) Explain why we will consider as neighborhood V(θ∗) an ellipsoid
E(r) of the following form

E(r) = {θ ∈ Θ : 〈Hθ∗(θ − θ∗), θ − θ∗〉 6 r2} ,

where the matrix Hθ∗ = P [ϕ′′(−y 〈x, θ∗〉)xxT ] + 2λI. We expect
a heuristic argument here, the purpose of the following questions
is to formalize arguments that can be used to actually prove that
this heuristic is correct.

In the following, we fix V(θ∗) = E(r) as in question 1.(b) and focus on
proving the equation proposed in question 1.(a). We consider

ϕ(θ) = Pn(`θ − `θ∗) + λ(‖θ‖2 − ‖θ∗‖2) .
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2. Show that

ϕ(θ) = 〈Pn∇θ`θ∗ , θ − θ∗〉+
1

2
〈Hn(θ − θ∗), θ − θ∗〉+ 2λ 〈θ − θ∗, θ∗〉 ,

where ∇θ`θ′(x, y) = ϕ′(−y 〈x, θ′〉)(−yx),

Hn =

∫ 1

0
Pn[ϕ′′(−y 〈x, tθ + (1− t)θ∗〉)xxT ]dt+ 2λI .

3. Give a concentration inequality for the linear process 〈Pn∇θ`θ∗ , θ − θ∗〉
using the PAC-Bayesian approach mentioned in Section 1.3.

4. Show that∣∣∣∣ ∫ 1

0
ϕ′′(−y 〈x, tθ + (1− t)θ∗〉)dt− ϕ′′(−y 〈x, θ∗〉)

∣∣∣∣ 6 1

2
| 〈x, θ − θ∗〉 | .

Deduce that

〈Hn(θ − θ∗), θ − θ∗〉 > 〈H∗n(θ − θ∗), θ − θ∗〉 − 1

2
〈Rn(θ − θ∗), θ − θ∗〉 ,

where

H∗n = Pn[ϕ′′(−y 〈x, θ∗〉)xxT ] + λI, Rn = Pn[| 〈x, θ − θ∗〉 |xxT ] .

We see here that the analysis of the quadratic process in general can
be handled by finding lower bound on the quadratic process 〈H∗nt, t〉
over ellipsoids, which can be done using the PAC-Bayesian approach
presented in Section 1.4. Then we have to bound from above the pro-
cess 〈Rn(θ − θ∗), θ − θ∗〉 = Pn[| 〈x, θ − θ∗〉 |3] which is a remainder
term as it is at first order of order r3 compared to the quadratic term
〈Hθ∗(θ − θ∗), θ − θ∗〉 = r2 on the frontier ∂E(r). Note that the con-
centration of this term is not easily derived from classical tools as the
Laplace transform E[exp(s 〈x, θ − θ∗〉3)] is not defined, for any s 6= 0.



Chapter 2

Community detection

Community detection is a basic problem of clustering in graphs, where we
want to recover well connected nodes. In this chapter, we present spectral
strategies to solve this problem in the toy statistical model of balanced two-
classes SBM.

2.1 Graphs

Hereafter, a graph G = (V,E) is a couple where V = {1, . . . , n} is a finite
set of vertices or nodes and E ⊂ V × V is a set of edges. All graphs here
are undirected, meaning that E is a set of pairs {i, j} or that, (i, j) ∈ E iff
(j, i) ∈ E. A graph is represented by its adjacency matrix A, which is the
n× n matrix such that

Ai,j =

{
1 if {i, j} ∈ E ,

0 if {i, j} /∈ E .

The matrix A is symmetric as the graph is undirected. A graph G = (V,E)
is random if the set E of edges is random. For example, the Erdös-Renyi
graph G(n, p) is the random graph where

∀i 6 j, Ai,j are i.d.d. Bernoulli random variables B(p) .

In these graphs, we are typically interested in the asymptotic behavior when
n → ∞ and p → 0. For example, we may wonder, as n → ∞, the smallest
p such that the Erdös-Renyii graph has an infinite connex component.

2.2 Two-classes stochastic block model (SBM)

The balanced two classes SBM is an extension of Erdös-Renyi model, de-
noted by G(N, p, q), where 0 < q < p < 1. The set of vertices V =
{1, . . . , N}, where N is odd (N = 2n) is divided into two communities

17
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C∗1 and C∗−1 of equal size |C∗i | = n and the set of vertices is random: ∀i 6 j,
Ai,j are independent random variables with parameters{

p if i, j belong to the same community ,

q if i, j belong to different communities .

The goal of community detection is to recover the communities from the
observation of the adacency matrix A.

Community detection aims at discovering a partition of {1, . . . , 2n} or,
equivalently, an element of the hypercube Θ = {−1, 1}2n. Indeed, each
partition C−1 ∪ C1 of {1, . . . , 2n} is encoded by the vector θ ∈ {−1, 1}2n
such that θi = 1 if i ∈ C1 and θi = −1 if i ∈ C−1. We denote by θ∗ ∈ Θ the
vector of the hypercube encoding the true partition of interest, i.e. the one
with coefficients θ∗i = 1 if i ∈ C∗1 and θ∗i = −1 if i ∈ C∗−1.

To evaluate a community detection algorithm, we define, for each θ ∈ Θ,
the proportion of indices where θ and θ∗ disagree, that, is the risk of θ is
defined by its Hamming distance to θ∗ divided by 2n:

R(θ) =
1

2n
#{i ∈ {1, . . . , 2n} : θi 6= θ∗i } =

1

2n

2n∑
i=1

1{θi 6=θ∗i } .

2.3 Spectral strategies

2.3.1 General remarks

Spectral estimation strategies are based on the elementary remark that, up
to renumbering of the nodes, one can assume that C−1 = {1, . . . , n} and
C1 = {n + 1, . . . , 2n}. In this case, writing Jn = 1n1

T
n the n × n matrix

filled with 1, it holds that the adjacency matrix A of the graph satisfies

E[A] =

[
pJn qJn
qJn pJn

]
.

This elementary remark shows that E[A] is rank 2, that its largest eigenvalue
λ1 = n(p + q) is the average degree of the random graph with distribution
G(2n, p, q), it is associated to the (normalized) eigenvector u1 = 12n/

√
2n.

The second eigenvalue of E[A] is λ2 = n(p−q). The most important remark
is that this second eigenvalue is associated with the (normalized) eigenvector

u2 =
1√
2n

[
1n
−1n

]
.

In words, the second eigenvector u2 of E[Z] classifies perfectly the
communities.
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2.3.2 Preliminaries

Spectral strategies consist in building unobserved matrices R, based on E[A]
in particular, admitting u2 as i-th eigenvector. Then, we estimate u2 as the
i-th eigenvector of an estimator R̂ of R (obtained by replacing E[A] by A in
the definition of R for example). Then, we classify each i according to the
sign of the i-th coordinate ûi of û, that is, we build

θ̂ = (sign(ûi))i∈{1,...,2n} . (2.1)

In this case, assuming ‖û‖2 = 1 and writing v =
√

2nu2, v̂ =
√

2nû,

‖û− u2‖22 =
1

2n

2n∑
i=1

(vi − v̂i)2 .

As vi ∈ {−1, 1} and Sign(v̂i) = Sign(ûi), for any i misclassified by our
algorithm, we have

(vi − v̂i)2 > 1 .

Therefore,

R(θ̂) =
1

2n

2n∑
i=1

I{i misclassified} 6 1

2n

2n∑
i=1

(vi − v̂i)2 = ‖û− u2‖22 .

Let a denote the angle between u2 and û, we have

‖û− u2‖22 = 2(1− cos(a)) 6 2(1− cos2(a)) 6 2 sin2(a) .

This last remark is useful since sin(a) can be bounded from above using
Davis-Kahan theorem.

Theorem 3 (Davis-Kahan). Let S,T denote two symmetric n×n matrices.
Fix i ∈ {1, . . . , n} and assume that the i-th eigenvalue of S is well separated
from the rest of the spectrum

min
j 6=i
|λi(S)− λj(S)| = δ > 0 .

Then the angle a between ui(S) and ui(T) satisfies

sin(a) 6
2

δ
‖S−T‖ ,

where ‖ · ‖ denote the operator norm, that is the largest singular value.

We do not prove Davis-Kahan Theorem in these notes, a reference where
it is done is given in Slack.
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Therefore, as u2 is the i-th eigenvector of the matrix R, we can bound
the risk of θ̂ by computing the spectral gap

δ = min
j 6=i
|λi(R)− λj(R)| . (2.2)

By Davis-Kahan theorem, we obtain then that the risk is bounded by

R(θ̂) 6
8

δ2
‖R− R̂‖2 . (2.3)

The final task is thus to bound from above the operator norm of the random
matrix ‖R − R̂‖. In the following, we present two strategies based on this
principle.

2.4 The spectral clustering algorithm

The spectral clustering algorithm (SCA) is the algorithm given in (2.1)
when the reference matrix R = E[A] and its estimator R̂ is the adjacency
matrix A. For clarity’s sake, let us recall here this algorithm.

Algorithm 1: Spectral clustering for community detection. Com-
pute the second (normalized) eigenvector û of A and classify each i according
to the sign of the ith coordinate of û, θ̂i = sign(ûi), that is i ∈ C1 iff θ̂i = 1
or classify i ∈ Cθ̂i.

According (2.3), the proportion of misclassification of this algorithm is
bounded by

R(θ̂) 6
8

δ2
‖A− E[A]‖2 ,

where δ is the spectral gap of E[A] corresponding to its second eigenvalue,
which is, according to the general remarks of Section 2.3.1:

δ = min(λ1 − λ2, λ2) = nµ, µ = min(p− q, 2q) .

To conclude the analysis of this algorithm, it remains to bound ‖A−E[A]‖.
In Chapter 4 (more precisely, in Theorem 43), we will prove that, with
probability 1− δ, ‖A− E[A]‖ 6 C max(

√
np log(n/δ), log(n/δ)), this shows

that, for the SCA,

R(θ̂) 6 C max

(
p log(n/δ)

nµ2
,

(
log(n/δ)

nµ

)2)
.

Equivalently, we get that R(θ̂) 6 ε if

n
µ2

p
&

log(n/δ)

ε
,

as the second condition nµ & log(n/δ)/
√
ε is then automatically satisfied.
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2.5 Guedon-Vershynin spectral algorithm

The material of this section is borrowed from the paper “Community detec-
tion in sparse networks via Grothendieck’s inequality” by O. Guédon and
R. Vershynin.

2.5.1 Critical discussion of the SCA bounds

There are two main limitations to the SCA algorithm. The first one is that
the quality of the algorithm gets worse as q decreases, which is non-satisfying
as q = 0 would mean that both communities are disjoints so recovering them
should be easier. The reason is that the first two eigenvalues of A have to
be different for SCA to succeed.

The second limitation is that the rate log(n)/n is slightly sub-optimal.
The reason here is that we don’t exploit the important information that the
second eigenvector belongs to the hypercube.

The purpose of the new strategy is to bypass both issues.

2.5.2 Definition of the new algorithm

To build a new spectral algorithm, we have to build a new reference matrix
R as a solution of a tractable problem that can easily be approximated,
then, we estimate R by the solution R̂ of an approximating problem.

Building the reference matrix R. We proceed in two steps to define
R. In the first step, we build a preliminary matrix P by removing from
E[A] the uninformative part regarding its main eigenvalue. This makes our
informative eigenvector u2 the first eigenvector of this preliminary matrix
P . This can easily be done. Indeed, write the eigendecomposition of E[A]
as

E[A] = λ1
J2n

2n
+ λ2u2u

T
2 ,

so u2 is also the largest eigenvector of the preliminary matrix

P = E[A]− λ1
J2n

2n
=
λ2

2n

[
Jn −Jn
−Jn Jn

]
.

The second problem is a bit more tricky. A first idea would be to simply
say that √

2nu2 = argmax{xTPx, x ∈ {−1, 1}2n} .

Exploiting this idea would yield to a strategy that is statistically optimal
(look at the problem at the end of the chapter), but that cannot be ex-
ploited in practice. Indeed, the max-cut problem defining

√
nu2 in the last
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formula is NP-hard. Therefore, we propose here a convex relaxation of it
(this construction based on a SDP relaxation is extremely classical). Write

xTPx =
〈
P,xxT

〉
F

,

where 〈·, ·〉F denote the Frobenius inner product between matrices. To build
a convex relaxation of

max
x∈{−1,1}2n

〈
P,xxT

〉
F

,

we just need to build a convex set that contains the matrices xxT , with
x ∈ {−1, 1}2n. The idea of the algorithm is to choose

S+ = {X < 0 : Xi,i = 1} .

Indeed, S+ is a convex set and all matrices X = xxT , with x ∈ {−1, 1}2n are
symmetric positive semi-definite and satisfy Xi,i = 1, hence S+ ⊃ {xxT :
x ∈ {−1, 1}n}. The maximization of 〈P,X〉F over S+ is easy: Define

R =

[
Jn −Jn
−Jn Jn

]
=

2n

λ2
P = 2nu2u

T
2 .

First remark that

〈X, P 〉F =
λ2

2n
〈X, R〉F .

Then, by Cauchy-Schwarz inequality, for any X ∈ S+,

〈X, R〉F 6 ‖X‖F ‖R∗‖F .

Then, as X ∈ S+, there exists X such that XTX, so Xi,j = 〈Ci(X), Cj(X)〉,
where Ci(X) denote the i-th column of X. The condition Xi,i = 1 then
means that ‖Ci(X)‖2 = 1, thus by Cauchy-Schwarz inequality, all |Xi,j | 6 1,
therefore,

‖X‖F 6 2n = ‖R‖F .

As R belongs to S+, we have thus, for any X ∈ S+,

〈X, R〉F 6 ‖X‖F ‖R‖F 6 ‖R‖2F = 〈R,R〉F .

By the equality condition in Cauchy-Schwarz inequality, we have thus

argmaxX∈S+ 〈P,X〉 = R =

[
Jn −Jn
−Jn Jn

]
. (2.4)

The matrix R defined above has clearly u2 as first eigenvector. We use the
representation ofR as solution of the convex problemR = argmaxX∈S+ 〈P,X〉
to estimate it and classify finally according to the general spectral scheme
described at the beginning of the chapter.
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Step 2: Building R̂. The construction of R̂ is then a plugging strategy:
we estimate P by an estimator P̂ and then R by

R̂ ∈ argmaxX∈S+

〈
P̂ ,X

〉
. (2.5)

To build an estimator P̂ of P , we estimate E[A] by A and we need an
estimator of λ1 = n(p+ q). We have

E[
∑

16i6j62n

Ai,j ] =
1

2
E[

∑
16i,j62n

Ai,j ] +
1

2
E[

2n∑
i=1

Ai,i] =
n2

2
(p+ q) + np .

This shows that

λ̂1 =
2

n

∑
16i6j62n

Ai,j ,

is an asymptotically unbiased estimator of λ1. We deduce from this estima-
tor our approximating matrix

P̂ = A− λ̂1

2n
J2n . (2.6)

2.5.3 Bounding the risk

Guedon and Vershynin’s algorithm can now be formally defined:
Algorithm 2: (GVSA) GV Spectral algorithm. Compute the

first (normalized) eigenvector û of R̂ defined in (2.5) and classify each i
according to the sign of the ith coordinate of û: θ̂i = sign(ûi), that is i ∈ C1

iff θ̂i = 1 or classify i ∈ Cθ̂i.
The performance of this algorithm is controlled by our general bound

(2.3). Here, the spectral gap δ is simply

δ = λ1(R) = 2n .

Therefore, it is sufficient to bound the operator norm of R̂ − R. As the
operator norm ‖R̂−R‖ is the sup-norm of its spectrum, it is bounded from
above by its `2 norm, which is ‖R̂−R‖F . We deduce that

R(θ̂) 6
2

n2
‖R̂−R‖2F =

2

n2
(‖R̂‖2F + ‖R‖2F − 2

〈
R̂, R

〉
F

) .

We have ‖R‖2F = 4n2 and ‖R̂‖2F 6 4n2 as we have seen that its entries are
all in [−1, 1]. We get that

R(θ̂) 6
4

n2
(‖R‖2F −

〈
R̂, R

〉
F

) . (2.7)

Thus, our main task is to bound from bellow the inner product
〈
R̂, R

〉
F

.
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Step 1: Basic remarks. To proceed, we first use repeatedly that

R =

[
Jn −Jn
−Jn Jn

]
=

2n

λ2
P .

Indeed, we get〈
R̂, R

〉
F

=
2n

λ2

〈
R̂, P

〉
F

=
2n

λ2

(〈
R̂, P̂

〉
F
−
〈
R̂, P̂ − P

〉
F

)
>

2n

λ2

(〈
R̂, P̂

〉
F
− sup

X∈S+

〈
X, P̂ − P

〉
F

)
>

2n

λ2

(〈
R, P̂

〉
F
− sup

X∈S+

〈
X, P̂ − P

〉
F

)
>

2n

λ2

(
〈R,P 〉F −

〈
R,P − P̂

〉
− sup

X∈S+

〈
X, P̂ − P

〉
F

)
>

2n

λ2

(
〈R,P 〉F − 2 sup

X∈S+
|
〈
X, P̂ − P

〉
F
|
)

= ‖R‖2F −
4n

λ2
sup
X∈S+

|
〈
X, P̂ − P

〉
F
|

Plugging this bound into (2.7) yields

R(θ̂) 6
16

nλ2
sup
X∈S+

|
〈
X, P̂ − P

〉
F
| .

Step 2: Grothendieck’s inequality. The second step of the proof is the
following inequality due to Grothendieck:

Theorem 4. For any matrix B such that

∀x,y ∈ {−1, 1}n :
∑

16i,j6n

Bi,jxiyj 6 1 ,

we have, for any vectors u, v in B2 = {u ∈ Rn : ‖u‖2 6 1},∑
16i,j6n

Bi,j 〈ui, vj〉 6 2 .

Remark 5. We prove a slightly sub-optimal version of this inequality at
the end of the chapter, where the constant 2 is replaced by some absolute
constant C.
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Let us now reformulate Grothendieck’s inequality to make it more re-
lated to our problem. First, define the set S = {X sym : XTX ∈ S+}.
Grothendieck inequality can be rewritten: For any matrix A,

sup
X,Y∈S

〈
A,XTY

〉
F
6 2 sup

x,y∈{−1,1}n
〈x,Ay〉 .

The second remark is that, for any matrix A,

sup
X∈S+

| 〈A,X〉F | = sup
X∈S
|
〈
A,XTX

〉
F
| 6 sup

X,Y∈S

〈
A,XTY

〉
F

,

where the last inequality follows by taking Y∗ = εX∗, with X∗ a maximizer
of |
〈
A,XTX

〉
F
| and ε = Sign(

〈
A, (X∗)TX∗

〉
F

).

Together with the conclusion of Step 1, these remarks imply that

R(θ̂) 6
32

nλ2
sup

x,y∈{−1,1}n

〈
x, (P̂ − P )y

〉
. (2.8)

Step 3: Probabilistic bounds. Let us now recall that

P = E[A]− λ1

2n
J2n, P̂ = A− λ̂1

2n
J2n ,

so

sup
x,y∈{−1,1}2n

〈
x, (P̂ − P )y

〉
6 sup
x,y∈{−1,1}2n

〈x, (A− E[A])y〉

+
λ1 − λ̂1

2n
sup

x,y∈{−1,1}2n
〈x,J2ny〉 .

We have

sup
x,y∈{−1,1}2n

〈x,J2ny〉 = 4n2 .

Besides

λ̂1 − λ1 =
2

n

∑
16i6j62n

(Ai,j − E[Ai,j ]) + 2p .

Bernstein’s inequality shows that, for any z > 0, with probability 1 −
2 exp(−z2), ∣∣∣∣ ∑

16i6j62n

(Ai,j − E[Ai,j ])

∣∣∣∣ . nz
√
p ∨ z2 .

thus, with the same probability,

|λ1 − λ̂1|
2n

sup
x,y∈{−1,1}2n

〈x,J2ny〉 . np ∨ nz√p ∨ z2 . (2.9)
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Now, for any x, y in the hypercube {−1, 1}2n, we have

〈x, (A− E[A])y〉 =
∑

16i6j62n

(Ai,j − E[Ai,j ])(xiyj + xjyi) .

Bernstein’s inequality shows that, for any z > 0, with probability 1 −
2 exp(−z2), ∣∣ 〈x, (A− E[A])y〉

∣∣ . nz
√
p ∨ z2 .

By a union bound, we get that, with probability 1− 2 ∗ 42n exp(−z2),

sup
x,y∈{−1,1}2n

〈x, (A− E[A])y〉 . nz
√
p ∨ z2 .

Together with (2.9), this shows that, with probability 1−2∗(42n+1) exp(−z2),

sup
x,y∈{−1,1}2n

〈
x, (P̂ − P )y

〉
. np ∨ nz√p ∨ z2 .

Plugging this bound into (2.8) finally shows that, with probability 1 − 2 ∗
(42n + 1) exp(−z2),

R(θ̂) .
np ∨ nz√p ∨ z2

n2(p− q)
.

To discuss this result, it is helpful to write z = n
√
pz′, so, for any z′ > 0,

we have, with probability 1− 2 ∗ (42n + 1) exp(−n2p(z′)2),

R(θ̂) .
np ∨ n2pz′ ∨ n2p(z′)2

n2(p− q)
. (2.10)

This last upper bound is smaller than ε if

p− q
p

&
1

nε
∨ z
′

ε
∨ (z′)2

ε
.

Besides, the probability is large iff

np(z′)2 & 1 .

These conditions are compatible iff

p− q
p

&
1
√
npε

.

Putting everything together, we have obtained that

Theorem 6. Assume that

p− q
p

>
C
√
npε

,

then, with probability 1− 2 exp(−n), GVSA makes less than εn errors.
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Remark 7. The condition in Theorem 6 cannot be fulfilled unless p &
(nε2)−1 and in this case, it is fulfilled when p − q is sufficiently large com-
pared to p. It is clear that this result improves upon the result proved for
SCA as it holds

1. without lower bound on q, which is much more reasonable,

2. in sparse networks where p � 1/n.

On the other hand, the dependency of p with respect to ε is much worse for
this algorithm than for SCA.

2.6 Proof of Grothendieck’s inequality

Let K(B) denote the smallest constant such that, for any vectors Xi, Yi
taking values in an Hilbert space H and such that ‖Xi‖, ‖Yj‖ 6 1,∑

16i,j6n

Bi,j 〈Xi, Yj〉 6 K(B) .

Such constant always exists and is always smaller than
∑

16i,j6n |Bi,j |. No-
tice that, as one can restrict this to the space spanned by Xi (resp. Yj), and
as this space is isometric to Rn, we have

K(B) = sup
ui,vj∈B2

∑
16i,j6n

Bi,j 〈ui,vj〉

Let Z ∼ N(0, I) denote a standard Gaussian vector and, for any u ∈ B2,
let Xu = 〈Z,u〉. Xu is a centered Gaussian process with covariance

Σu,v = E[XuXv] = uTE[ZZT ]v = 〈u,v〉 ,

so ∑
16i,j6n

Bi,j 〈ui,vj〉 = E
[ ∑

16i,j6n

Bi,jXuiXvj

]
.

Now let R > 0 and, for any u ∈ B2, let

Xa
u = Xu1{|Xu|6R}, Xb

u = Xu1{|Xu|>R} .

We deduce that ∑
16i,j6n

Bi,j 〈ui,vj〉 =

4∑
i=1

Ei ,
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where

E1 = E
[ ∑

16i,j6n

Bi,jX
a
uiX

a
vj

]
,

E2 = E
[ ∑

16i,j6n

Bi,jX
a
uiX

b
vj

]
,

E3 = E
[ ∑

16i,j6n

Bi,jX
b
uiX

a
vj

]
,

E4 = E
[ ∑

16i,j6n

Bi,jX
b
uiX

b
vj

]
.

As |Xa
ui | 6 R, we have, by assumption∑

16i,j6n

Bi,jX
a
uiX

a
vj 6 R2 ,

so E1 6 R2.
Besides, we have

E[(Xa
u)2] 6 R2

E[(Xb
u)2] = 2

∫ +∞

R
x2 exp(−x2/2)

dx√
2π

= 2[−x exp(−x2/2)]+∞R + P(|N(0, 1)| > R)

6 (2R/
√

2π + 1) exp(−R2/2) .

Therefore, as all Xa
u and Xb

u belong to the Hilbert space

H = {f : Rn → R : E[f2(Z)] <∞} ,

endowed with the inner product 〈f, g〉 = E[f(Z)g(Z)], by definition of K(B),
we have

E2 6 K(B)R

√
2R/
√

2π + 1 exp(−R2/4) ,

E3 6 K(B)R

√
2R/
√

2π + 1 exp(−R2/4) ,

E4 6 K(B)(2R/
√

2π + 1) exp(−R2/2) .

We have obtained that

K(B) 6 R2 +K(B)ψ(R) ,

where

ψ(R) 6 2R

√
2R/
√

2π + 1 exp(−R2/4) + (2R/
√

2π + 1) exp(−R2/2) .

Therefore, for any R > 0 such that ψ(R) < 1, we have

K(B) 6
R2

1− ψ(R)
.
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2.7 Problem

The problem is decomposed into two essentially independent parts. In the
first part, we propose to consider the reference matrix

R = E[A]− λ1u1u
T
1 .

1. Propose an estimator R̂ of R and deduce a spectral clustering algo-
rithm associated.

2. Compute the spectral gap δ of R.

3. Control the operator norm ‖R̂−R‖.

4. Deduce an upper bound on the frequency of misclassified nodes of the
algorithm in question 1: R(θ̂). Discuss the result.

In the second part of this problem, we define P = E[A] − λ1u1u
T
1 and the

reference matrix
θ∗ ∈ argmaxθ∈{−1,1}2n θ

TPθ .

5. Prove that θ∗ = u2. We estimate thus P by P̂ given in question 1 and
θ∗ by

θ̂ ∈ argmaxθ∈{−1,1}2n θ
T P̂ θ .

6. Prove that 〈
θ∗, θ̂

〉2
= C

〈
P, θ̂θ̂T

〉
F

,

for some constant C that should be computed.

7. Prove that〈
θ∗, θ̂

〉2
> 4n2 − 2C sup

θ∈{−1,1}2n
|
〈
P̂ − P, θθT

〉
| .

8. Deduce an upper bound on ‖θ∗ − θ̂‖2 and then on R(θ̂). Discuss the
result.
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Chapter 3

Concentration of measure

In the first lectures, we saw that several problems in machine learning re-
duce to the problem of building deterministic bounds on suprema of sums of
independent random variables. These kind of deviation inequalities can be
deduced from concentration inequalities, which show that regular functions
of independent random variables do not deviate much from their expecta-
tion. Then, we have to bound expected suprema. This chapter presents basic
tools to prove concentration inequalities for a random variable X around its
expectation, that is upper bounds on the probabilities P(|X−E[X]| > x) for
any x > 0. We focus here on non necessarily bounded random variables such
as sub-Gaussian and sub-Gamma random variables, for which these tails are
exponentially small. We conclude the chapter with the application of the
general result to the particular case where X is a sum of possibly unbounded
independent random variables. It turns out that deriving asymptotically op-
timal bounds in this case is still quite open.

In all the chapter, C denotes a numerical constant whose value may
change from line to line.

3.1 Motivating example

Suppose we want to analyse the SVM predictor (see also the problem in
Chapter 1):

θ̂λ ∈ argminθ∈Θ Pn`θ + λ‖θ‖22 ,

where x ∈ Rp = Θ, y ∈ {−1, 1} and `θ(x, y) = ϕ(−y 〈x, θ〉), with ϕ a
1-Lipschitz function, say ϕ(x) = log(1 + exp(x)).

Following the agenda presented in the first lecture, it is not hard to get
convinced that this analysis requires in particular an upper bound on the
linear process

sup
θ∈C
〈Pn∇θ`θ∗ , θ − θ∗〉 ,

31
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over an ellipsoid C. Under a simple assumption such as x ∼ N(0,Σ),
the concentration of this process is not so easy to prove as Pn∇θ`θ∗ =
Pn[ϕ′(−y 〈x, θ∗〉)(−yx)] = n−1

∑n
i=1 ϕ

′(−yi 〈xi, θ∗〉)(−yixi), so:

1. This concentration cannot be reduced to the one of a Lipschitz function
of a Gaussian vector, so the GCI does not apply.

2. The random variables Zθ = 〈ϕ′(−yi 〈xi, θ∗〉)(−yixi), θ − θ∗〉 are not
bounded.

The purpose of the following section is to introduce the proper setting to
prove concentration of PnZθ. Deviation inequalities for supθ∈C Pn[Zθ]−E[Zθ]
will be provided in Lectures 6 and 5.

3.2 Sub-Gaussian random variables

The variable Zθ is actually a sub-Gaussian random variable. The following
result provides several equivalent ways to define sub-Gaussian random vari-
ables. The first of these characterizations is that these random variables are
those concentrating around 0 at least as fast as Gaussian random variables.

Theorem 8. Let X denote a random variable. Then, the following proper-
ties are equivalent.

(i) For any x > 0, P(|X| > x) 6 2 exp(−x2/K2
1 ).

(ii) For any integer p > 1, ‖X‖p := E[|X|p]1/p 6 K2
√
p.

(iii) For any |s| < 1/K3, E[exp(s2X2)] 6 exp(s2K2
3 ).

(iv) E[exp(X2/K2
4 )] 6 2.

If moreover, X is centered, then all properties are also equivalent to

(v) For any s ∈ R, E[exp(sX)] 6 exp(s2K2
5 ).

If one of these properties holds, then we say that X is sub-Gaussian and
the different Ki differ by at most a multiplicative numerical constant. The
smallest constant K4 such that (iv) holds is called the sub-Gaussian norm
of X and it is denoted by ‖X‖ψ2.

Theorem 8 is the most important result of this chapter. We shall mostly
use the implication (v) =⇒ (i) in the following. In this case, the proof
based on Chernoff’s bound shows that if (v) is satisfied with K5, then (i)
holds with K1 = 2K5.

As an exercise, show that E[X] = 0 if (v) holds.

Proof. We prove a chain of implications.
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(i) =⇒ (ii) Assume that K1 = 1. Then, for any p > 1, we have

E[|X|p] =

∫ +∞

0
P(|X|p > t)dt since |X|p > 0 a.s.

= p

∫ +∞

0
P(|X| > u)up−1du posing t = up

6 p

∫ +∞

0
(u2)p/2−1 exp(−u2)2udu

= pΓ(p/2) posing u2 = v .

Then, we use the following classical Stirling’s approximation, valid for
any x > 0, (

x

e

)x
6 Γ(x+ 1) 6 xx . (3.1)

It implies directly

‖X‖p 6 p1/p

√
p

2
6 2
√
p .

Now letK1 > 0, then P(|X/K1| > x/K1) 6 exp(−(x/K1)2), so |X/K1|
satisfies (i) with K1 = 1, thus ‖X/K1‖p 6 2

√
p and therefore ‖X‖p 6

2K1
√
p.

(ii) =⇒ (iii) We assume that K2 = 1. We use a Taylor expansion to say that

E[exp(s2X2)] 6
+∞∑
k=0

s2kkk

Γ(k + 1)
6

+∞∑
k=0

s2kek .

The last inequality follows from (3.1). The last upper bound is finite
if |s| < 1/

√
e and then

E[exp(s2X2)] 6
1

1− es2
.

Moreover, for any |s| < 1/
√

2e, it follows that

E[exp(s2X2)] 6 1 +
es2

1− es2
6 1 + 2es2 6 exp(2es2) .

Let now K2 > 0, then ‖X/K2‖p 6
√
p for any p > 1 so for any

|s| < 1/
√

2e

E[exp((s/K2)2X2)] 6 exp(2eK2
2 (s/K2)2) ,

that, is for any |s| < 1/
√

2eK2, E[exp(s2X2)] 6 exp(s22eK2
2 ).

(iii) =⇒ (iv) is trivial.
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(iv) =⇒ (i) Let x > 0, we have

P(|X| > x) = P(exp(X2/K2
4 ) > exp(x2/K2

4 )) 6 2 exp(−x2/K2
4 ) ,

where the last inequality follows from Markov’s inequality.

(iii) =⇒ (v) Let s ∈ R. If |s| < 1/K3, we use the inequality exp(x) 6 x+ exp(x2)
to say that

E[exp(sX)] 6 E[exp(s2X2)] 6 exp(s2K2
3 ) .

If |s| > 1/K3, we use that sx 6 1
2(s2K2

3 + x2/K2
3 ) to obtain

E[exp(sX)] 6 exp(s2K2
3/2)E[exp(X2/2(K2

3 ))] 6 exp(s2K2
3 ) .

(v) =⇒ (i) We use Chernoff’s bound: Let x > 0, then we have

P(X > x) = inf
s>0

P(exp(sX) > exp(sx))

6 inf
s>0

exp(−sx+ logE[exp(sX)])

= exp(− sup
s>0
{sx− logE[exp(sX)]}) . (3.2)

When (v) holds, we have therefore

P(X > x) 6 exp(− sup
s>0
{sx− s2K2

5}) = exp(−x2/4K2
5 ) .

Likewise, we have

P(X < −x) = P(−X > x) 6 exp(−x2/4K2
5 ) .

And finally
P(|X| > x) 6 2 exp(−x2/4K2

5 ) .

Let us now gather some interesting remarks that will be useful in the
following.

1. To prove that Zθ is sub-Gaussian, we can use for example, the char-
acterization by the moments, indeed, as 〈x, θ − θ∗〉 ∼ ‖θ−θ∗‖Σ N(0, 1)
and the standard Gaussian distribution is sub-Gaussian with ‖N(0, 1)‖ψ2 =
κ =
√

2 log 2,

E[exp(Z2
θ/K

2)] 6 E[exp(〈x, θ − θ∗〉 /K2)] 6 2 ,

if K > κ‖θ−θ∗‖Σ. Actually, modifying slightly the proof, we obtain a
much more important result which is that ‖Zθ −Zθ′‖ψ2 6 κ‖θ− θ′‖Σ.
This property says that Zθ has sub-Gaussian increments, a property
that will allow to bound the deviation of the supremum using chaining
arguments in Lecture 5.
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2. A second remark that can be useful is that ‖X‖ψ2 defines indeed a
norm. (Check in particular that the triangle inequality follows from
convexity of x 7→ exp(x2)).

3. A third remark is that, if ‖X‖ψ2 6 K, then

‖X − E[X]‖ψ2 6 ‖X‖ψ2 + ‖E[X]‖ψ2 6 2‖X‖ψ2 6 2K .

The first inequality follows from the fact that ‖·‖ψ2 is a norm while the
second one comes from Characterization (iv) of sub-Gaussian random
variables and Jensen’s inequality. A consequence here is that

‖Zθ − E[Zθ]‖ψ2 6 2κ‖θ − θ∗‖Σ , (3.3)

‖Zθ − Zθ′ − E[Zθ − Zθ′ ]‖ψ2 6 2κ‖θ − θ′‖Σ .

This centering step is key to derive from the sub-Gaussianity of in-
dependent random variables the sub-Gaussianity of the sum. Indeed,
this property is immediate using characterization (v) of sub-Gaussian
random variables. It is known as the general Hoeffding’s inequality
(see Theorem 9 in Section 3.3).

4. Bounded random variables are sub-Gaussian. Indeed, if X ∈ [a, b]
almost surely, then ‖X−E[X]‖ψ2 6 (b−a)/ log 2. This follows directly
from the upper bound exp(− log 2(X−E[X])2/(b−a)2) 6 2 a.s., which
yields that characterisation (iv) of sub-Gaussian random variables in
Theorem 8 holds. A sharper analysis shows that (v) holds in this case
with K5 = (b− a)/

√
8.

3.3 Hoeffding’s inequality

Theorem 9 (General Hoeffding’s inequality). If X1, . . . , Xn are indepen-

dent centered and sub-Gaussian, then ‖
∑n

i=1Xi‖ψ2 6 C
√∑n

i=1 ‖Xi‖2ψ2
.

Proof. By independence, for any s ∈ R,

E[exp(s
n∑
i=1

Xi)] =
n∏
i=1

E[exp(sXi)] .

The result then follows directly from the characterisation (v) of sub-Gaussian
random variables in Theorem 8. In particular, we have therefore that the
constant K5 for the sum satisfies K2

5 =
∑n

i=1K
2
5,i, where K5,i is the constant

K5 for the variable Xi and it follows that

∀x > 0, P(|
n∑
i=1

Xi| > x) 6 exp

(
− x2

4
∑n

i=1K
2
5,i

)
.
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Theorem 9 (with sharp constants) and the fact that bounded random
variables are sub-Gaussian yield the classical Hoeffding’s inequality.

Theorem 10 (Hoeffding’s inequality). If X1, . . . , Xn are independent ran-
dom variables such that Xi ∈ [ai, bi] a.s., then

∀z > 0, P(|
n∑
i=1

(Xi − E[Xi])| > z) 6 exp

(
− 2z2∑n

i=1(bi − ai)2

)
.

To conclude this section, we present the concentration of the process
(Pn − P )Zθ that appear in the analysis of SVM. We have

‖(Pn − P )(Zθ)‖ψ2 =
1

n
‖

n∑
i=1

(Zθ(xi, yi)− E[Zθ(x, y)])‖ψ2

6
C

n

√√√√ n∑
i=1

‖(Zθ(xi, yi)− E[Zθ(x, y)])‖2ψ2
Hoeffding

6
C

n

√√√√ n∑
i=1

‖θ − θ∗‖2Σ by (3.3)

=
C‖θ − θ∗‖Σ√

n
.

The same arguments can be used to show also that

‖(Pn − P )(Zθ − Zθ′)‖ψ2 6
C‖θ − θ′‖Σ√

n
,

therefore, that, for any z > 0,

P((Pn − P )(Zθ − Zθ′) > z) 6 exp

(
− nz2

C‖θ − θ′‖2Σ

)
.

The following sections gather the proofs of the bounded difference inequal-
ity and the GCI, which provide two non-trivial examples of sub-Gaussian
random variables.

3.4 Bounded difference inequality

The bounded difference inequality is an extension of Hoeffding’s inequality
that allows to bound suprema of bounded empirical processes.

Let c ∈ Rn and X1, . . . ,Xn denote measurable spaces. The set BD(c) is
the set of functions f :

∏n
i=1Xi → R such that

∀x,y ∈
n∏
i=1

Xi, |f(x)− f(y)| 6
n∑
i=1

ci1{xi 6=yi} .
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Theorem 11 (Bounded difference inequality). Let X1, . . . , Xn denote in-
dependent random variables such that Xi ∈ Xi and let f ∈ BD(c). Then
‖f(X1, . . . , Xn)− E[f(X1, . . . , Xn)]‖ψ2 6 C‖c‖2.

Remark 12. The proof shows that we have tight constants

∀s ∈ R, E[exp(s(f(X1, . . . , Xn)−E[f(X1, . . . , Xn)]))] 6 exp

(
s2‖c‖22

8

)
.

Remark 13. The result can be extended to functions with sub-Gaussian
increments (see the problem at the end of the chapter).

Proof. Let s ∈ R and Fi denote the sigma-algebra generated by X1, . . . , Xi.
Denoting by F0 = {Ω, ∅}, we have

f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] =
n∑
i=1

∆i,

where
∆i = E[f(X1, . . . , Xn)|Fi]− E[f(X1, . . . , Xn)|Fi−1] .

Let

B+
i = sup

xi∈Xi
E[f(X1, . . . , xi, . . . , Xn)|Fi−1] ,

B−i = inf
xi∈Xi

E[f(X1, . . . , xi, . . . , Xn)|Fi−1] .

We have B−i 6 E[f(X1, . . . , Xn)|Fi] 6 B+
i , B+

i and B−i are Fi−1 measurable
and, as f ∈ BD(c), B+

i −B
−
i 6 ci. Therefore, by Hoeffding’s lemma

E[exp(s∆i)|Fi−1] 6 exp

(
s2c2

i

8

)
.

Proceeding recursively, it follows that

E[exp(s
n∑
i=1

∆i)] 6 exp

(
s2‖c‖22

8

)
.

Let X1, . . . , Xn denote independent random variables such that Xi ∈
[ai, bi] a.s.. Let

f :
n∏
i=1

[ai, bi]→ R, f(x1, . . . , xn) =
n∑
i=1

xi .

Let x,y ∈
∏n
i=1[ai, bi] tels que xi = yi for any i 6= i0. Then

f(x)− f(y) = xi0 − yi0 6 bi0 − ai0 .
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Therefore, by the bounded difference inequality

∀s ∈ R, E[exp(s(
n∑
i=1

Xi − E[Xi]))] 6 exp

(
s2
∑n

i=1(bi − ai)2

8

)
.

The bounded difference therefore extends Hoeffding’s inequality.
It also applies to the following more general situation that is of interest

in learning theory. Let T denote a countable set and let {(Xi,t)t∈T , i =
1, . . . , n} denote independent processes indexed by T . We assume that

∀t ∈ T, ∀i ∈ {1, . . . , n}, Xi,t ∈ [ai, bi], a.s. .

Let Xi = [ai, bi]
T endowed with the cylinder sigma-algebra and let

f :

n∏
i=1

Xi → R, f((x1,t)t∈T , . . . , (xn,t)t∈T ) = sup
t∈T

{ n∑
i=1

xi,t−E[

n∑
i=1

Xi,t]

}
.

Using that supt∈T at − supt∈T bt 6 supt∈T (at − bt), we get that, for any
x,y ∈

∏n
i=1Xi such that (xi,t)t∈T = (yi,t)t∈T for any i 6= i0,

f(x)− f(y) 6 sup
t∈T
{xi0,t − yi0,t} 6 bi0 − ai0 .

Therefore, by the bounded difference inequality, the random variable Z =
supt∈T

∑n
i=1Xi,t − E[Xi,t] satisfies

∀s ∈ R, E[exp(s(Z − E[Z]))] 6 exp

(
s2
∑n

i=1(bi − ai)2

8

)
.

The bounded difference inequality shows that the supremum of empirical
processes Z = supt∈T

∑n
i=1Xi,t−E[Xi,t] concentrates as well as if T = {t0}

is reduced to a singleton!
See also the problem at the end of the section for suprema of sums of

sub-Gaussian random variables.

3.5 Gaussian concentration inequality

Theorem 14. Let X ∼ N(0, I) denote a standard Gaussian vector on Rd
and let f : Rd → R denote a function such that

∀x, y ∈ Rd, |f(x)− f(y)| 6 L‖x− y‖2 .

Then ‖f(X)− E[f(X)]‖ψ2 6 CL.

Remark 15. We provide an elementary proof of the result with sub-optimal
constants. Using Herbst’s argument together with log-Sobolev’s inequality for
Gaussian distribution, one can prove (see for example P. Massart’s lectures)

E[exp(s(f(X)− E[f(X)]))] 6 exp

(
s2L2

2

)
.

This bound is sharp as can be seen when d = 1 and f(x) = x.
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Proof. Let s ∈ R, we want to bound from above

E[exp(s(f(X)− E[f(X)]))] .

Let X ′ ∼ N(0, I) be independent from X. By Jensen’s inequality

E[exp(s(f(X)− E[f(X)]))] = E[exp(s(f(X)− E[f(X ′)|X]))]

= E[exp(E[s(f(X)− f(X ′))|X])]

6 E[exp(s(f(X)− f(X ′)))] .

Now, for any θ ∈ [0, π/2], let

U(θ) = sin(θ)X + cos(θ)X ′, V (θ) = ∂θU(θ) = cos(θ)X − sin(θ)X ′ .

We have

U(π/2) = X, U(0) = X ′, U(θ) ∼ N(0, I), V (θ) ∼ N(0, I) ,

(U(θ), V (θ))T centered Gaussian vector, E[U(θ)V (θ)] = 0 .

It follows that U(θ) and V (θ) are independent and, by the fundamental
theorem of analysis,

f(X)− f(X ′) =

∫ π/2

0
〈∇f(U(θ)), V (θ)〉 dθ .

Conditioning on U(θ), 〈∇f(U(θ)), V (θ)〉 ∼ N(0, ‖∇f(U(θ))‖22). By Jensen’s
inequality

E[exp(s(f(X)− f(X ′)))] = E[exp(

∫ π/2

0
s 〈∇f(U(θ)), V (θ)〉 dθ)]

6
2

π

∫ π/2

0
E[exp((πs/2) 〈∇f(U(θ)), V (θ)〉)]dθ

It remains to recall that, if X ∼ N(0, σ2), E[exp(sX)] = exp(s2σ2/2) to
conclude that

E[exp(s(f(X)− f(X ′)))] 6 exp(s2π2L2/8) .

3.6 Sub-Gamma random variables

Sub-Gaussian concentration inequalities are easy to use but usually do not
provide the correct order of magnitude of deviations. A simple situation
where this phenomenon occurs is as follows: Assume X1, . . . , Xn are i.i.d.
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with Bernoulli distribution B(p). Then Hoeffding’s inequality states that,
for any x > 0,

P
(∣∣∣∣ 1√

n

n∑
i=1

(Xi − p)
∣∣∣∣ > x

)
6 2 exp

(
− Cx2

)
.

On the other hand, the central limit theorem states that n−1/2
∑n

i=1(Xi −
p) =⇒ N(0, p(1− p)), so by the Gaussian concentration inequality,

lim
n→∞

P
(∣∣∣∣ 1√

n

n∑
i=1

(Xi − p)
∣∣∣∣ > x

)
6 2 exp

(
− Cx2

p(1− p)

)
.

The question that we investigate in this section is whether one can ob-
tain deviation from the mean for random variables with probability 1 −
2 exp(−Cx2/Var(X)), at least for small values of x.

Definition 16. A random variable X is (b, σ2)-sub-Gamma if

∀|s| < 1/b, E[exp(sX)] 6 exp(s2σ2) .

A sufficient condition for sub-Gamma random variables can be expressed
in terms of moments.

Proposition 17. If X is centered and there exists b, σ2 such that, for any
k > 2,

E[|X|k] 6 k!bk−2σ2 ,

then, for any ε > 0, X is (2b, 2σ2)-sub-Gamma.

Proof. Write, for any s < 1/b,

E[exp(sX)] 6 1+
∑
k>2

skE[|X|k]
k!

6 1+s2σ2
∑
k>0

bksk 6 1+2s2σ2 6 exp(2s2σ2) .

If X is bounded, the following result shows that X is sub-Gamma with
parameter σ2 � Var(X).

Proposition 18. Assume that X is centered and |X| 6 b a.s., then, for
any ε > 0, X is (b(1 + ε)/3ε,Var(X)(1 + ε)/2) sub-Gamma.

Remark 19. Proposition 18 is a refinement of the previous proposition that
would have shown directly that X is (2b, 2Var(X)) sub-Gamma.
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Proof. The proof goes along the same argument. Write σ2 = Var(X). We
have

E[exp(sX)] = 1 +
s2

2

∑
k>2

sk−2E[Xk]

k!/2
.

Using that

∀k > 2, E[Xk] 6 σ2bk−2, k! > 2 ∗ 3k−2 ,

we get

E[exp(sX)] 6 1 +
s2σ2

2

1

1− bs/3
.

So if s < 3ε/[b(1 + ε)], then

E[exp(sX)] 6 1 +
s2σ2(1 + ε)

2
6 exp

(
s2σ2(1 + ε)

2

)
.

Finally, the following proposition establishes that the sum of independent
sub-Gamma random variables is also sub-Gamma.

Proposition 20. Assume that X1, . . . , Xn are independent and for any i ∈
{1, . . . , n}, Xi is (bi, σ

2
i ) sub-Gamma. Then

∑n
i=1Xi is (b̄, σ̄2) sub-Gamma,

with

b̄ = max
i∈{1,...,n}

bi, σ̄2 =
n∑
i=1

σ2
i .

Proof. Just write that, by independence, for any s for which it makes sense
(in particular, for any |s| < 1/b̄ therefore)

E[exp(s
n∑
i=1

Xi)] =
n∏
i=1

E[exp(sXi)] .

3.7 Link with sub-exponential random variables

The first result provides various equivalent characterization of sub-exponential
random variables.

Theorem 21. Let X be a random variable. The following statement are
equivalent.

(i) For any x > 0, P(|X| > x) 6 2 exp(−x/K1).
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(ii) For any p > 1, (E[|X|p])1/p 6 K2p.

(iii) For any |s| < 1/K3, E[exp(s|X|)] 6 exp(sK3).

(iv) E[exp(|X|/K4)] 6 2.

If one of these properties holds, all of them do and the different Ki differ by
at most a multiplicative constant.

Besides, the smallest K4 such that (iv) holds is called the sub-exponential
norm of X and is denoted by ‖X‖ψ1.

Proof. (i) =⇒ (ii): Assume that K1 = 1 and write

E[|X|p] =

∫ +∞

0
P(|X| > u1/p)du

= p

∫ +∞

0
P(|X| > v)vp−1dv

6 2p

∫ +∞

0
exp(−v)vp−1dv = 2pΓ(p) .

By Stirling’s estimate Γ(p) 6 (p−1)p−1 this yields E[|X|p] 6 2pp. The result
for general K1 follows by applying the case K1 = 1 to X/K1.

(ii) =⇒ (iii): Assume that K2 = 1 and write

E[exp(s|X|)] =
∑
k>0

skE[|X|k]
k!

6
∑
k>0

skkk

k!
.

By Stirling’s estimate k! > (k/e)k, we get that the series is convergent if
|s| < 1/2e and

E[exp(s|X|)] 6 1

1− se
= 1 +

se

1− se
6 1 + 2se 6 exp(2es) .

This proves the result for K2 = 1. The result for general K2 follows by
applying the result for K2 = 1 to X/K2.

(iii) =⇒ (iv) is straightforward.

(iv) =⇒ (i): By Markov’s inequality

P(|X| > x) = P(exp(|X|/K4) > exp(x/K4))

6 E[exp(|X|/K4)] exp(−x/K4)

6 2 exp(−x/K4) .
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It is clear from (ii) for example that any sub-Gaussian random variable
is sub-exponential and ‖X‖ψ1 6 C‖X‖ψ2 . Besides, point (iv) allows to show
the important fact that, if X is sub-Gaussian, X2 is sub-exponential and
‖X2‖ψ1 = ‖X‖2ψ2

. Finally, the basic remark 2ab = infε∈(0,1) εa
2 + ε−1b2

allows to show the extension of this important fact that, for any X,Y ,
‖XY ‖ψ1 6 ‖X‖ψ2‖Y ‖ψ2

The link with sub-Gamma random variables is given in the following
result.

Theorem 22. If X is centered with E[X2] = σ2 and ‖X‖ψ1 6 K, then

(i) X is (CK,CK2) sub-Gamma.

(ii) X is (CK log(K/σ), Cσ2) sub-Gamma.

Remark 23. The same proof shows that, if X is centered with E[X2] = σ2

and ‖X‖ψ2 6 K, then X is (CK
√

log(K/σ), Cσ2) sub-Gamma. These
results complement Proposition 18 for possibly unbounded sub-Gamma (or
sub-Gaussian) random variables.

Proof. For the first part of the proof, we have by Characterization (ii) of
sub-exponential random variables, for all k > 2,

E[|X|k] 6 (CKk)k 6 k!(CeK)k ,

where the second inequality follows by Stirling’s estimate k! > (k/e)k. The
conclusion then follows from Proposition 17.

The second part uses the same ingredient but it’s slightly more tricky.
Let k > 2 be an integer and x > 1. We have, by Hölder’s inequality,

E[|X|k] = E[|X|2−1/x|X|k−2+1/x] 6 σ2−1/xE[|X|2x(k−2)+2]1/2x .

Now by Characterisation (ii) of sub-exponential random variables, we have

E[|X|2x(k−2)+2] 6 (CK(2x(k − 2) + 2))2x(k−2)+2

Therefore,

E[|X|k] 6 (CK)k−2+1/xσ2−1/x(2x(k − 2) + 2)k−2+1/x

6 Cσ2(CK)k−2(k − 1)!

(
K

σ

)1/x

xk−2

As this is true for any x > 1, one can choose x = log(K/σ) and the result
follows by Proposition 17.

We conclude this section with the following straightforward but useful
corollary.

Proposition 24. If X,X ′ are sub-Gaussian, then the random variable XX ′−
E[XX ′] is (C‖X‖ψ2‖X ′‖ψ2 , C‖X‖2ψ2

‖X ′‖2ψ2
)-sub-Gamma.
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3.8 Bernstein’s inequality

Bernstein’s inequality is a concentration result for sub-Gamma random vari-
ables.

Theorem 25 (Bernstein’s inequality). Assume that X is (b, σ2) sub-Gamma.
Then, for any x > 0,

P(|X| > x) 6 2 exp

(
−min

(
x2

2σ2
,
x

b

))
.

Proof. We fix x > 0 and use Chernoff’s bound. We have

P(X > x) 6 exp

(
− sup

s>0
sx− logE[exp(sX)]

)
.

For any s < 1/b, we have

logE[exp(sX)] 6 s2σ2 ,

so

sup
s>0

sx− logE[exp(sX)] 6 sup
s∈[0,1/b]

sx− s2σ2 =

{
x/b if x > 2σ2/b ,

x2/2σ2 if x 6 2σ2/b

This proves that, if X is (b, σ2) sub-Gamma. Then, for any x > 0,

P(X > x) 6 exp

(
−min

(
x2

2σ2
,
x

b

))
.

By definition, if X is (b, σ2) sub-Gamma, −X also so the result follows by
applying the previous bound to −X and conclude with a union bound.

Together with Proposition 20, Bernstein’s inequality yields the following
useful corollary.

Theorem 26. Let X1, . . . , Xn denote independent random variables such
that each Xi is (bi, σ

2
i ) sub-Gamma. Then

∀x > 0, P(|
n∑
i=1

Xi| > x) 6 2 exp

(
−min

(
x2

2
∑n

i=1 σ
2
i

,
x

maxi∈{1,...,n} bi

))
.

Theorem 26 together with the characterization of sub-Gamma random
variables stated in Proposition 17 boils down to the proof of the classical
Bernstein’s inequality.
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Theorem 27 (Bernstein’s inequality). If X1, . . . , Xn are independent ran-
dom variables such that, for any i ∈ {1, . . . , n} and k > 2,

E[|Xi|k] 6 k!σ2
iK

k−2
i ,

then, for any z > 0,

P
( n∑
i=1

(Xi − E[Xi]) > z

)
6 exp

(
− cmin

(
x2

σ2
,
x

K

))
,

with σ2 =
∑n

i=1 σ
2
i , K = maxi∈{1,...,n}Ki.

A corollary of this result is obtained by combining Theorem 26 with
Theorem 22. It yields the following corollary.

Corollary 28. Assume that X1, . . . , Xn are independent and sub-Exponential,
then, for any z > 0,

P
(∣∣∣∣ n∑

i=1

(Xi − E[Xi])

∣∣∣∣ > z

)
6 2 exp

(
− cmin

(
t2∑n

i=1 ‖Xi‖2ψ1

,
t

maxi∈{1,...,n} ‖Xi‖ψ1

))
.

A less classical consequence can be obtained by putting together The-
orem 25 and Theorem 22. Indeed, if X1, . . . , Xn are centered independent
random variables such that ‖Xi‖ψ1 6 Ki and E[X2

i ] = σ2
i , then

∀x > 0, P
(∣∣∣∣ 1√

n

n∑
i=1

Xi

∣∣∣∣ > x

)
6 2 exp

(
− cmin

(
x2

σ2
,

√
nx

K̄

))
,

where

σ2 =
1

n

n∑
i=1

σ2
i , K̄ = max

i=1,...,n
Ki log(Ki/σi) .

This completes the first part of the program we planned in this chapter by
showing that sums of sub-exponential random variables deviates as predicted
by the central limit theorem for any

x 6

√
nσ2

K̄
.

We conclude with a simple corollary that we use repeatedly in the following.

Corollary 29. Let (X1, X
′
1), . . . , (Xn, X

′
n) denote independent couples of

sub-Gaussian random variables, let

K2 =
n∑
i=1

‖Xi‖2ψ2
‖X ′i‖2ψ2

, b = max
i∈{1,...,n}

‖Xi‖ψ2‖X ′i‖ψ2 .

Then, for any z > 0, we have

P
( n∑
i=1

XiX
′
i − E[XiX

′
i] > z

)
6 exp

(
− C min

(
z2

K2
,
z

b

))
.
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3.9 Problem

The purpose of this problem is to prove an extension of the bounded differ-
ence inequality for suprema of sums of sub-Gaussian random variables

sup
t∈T

n∑
i=1

Xi,t ,

where (Xi,t)t∈T are independent random variables such that

K = ‖ sup
i∈{1,...,n}

sup
t∈T

Xi,t‖ψ2 <∞ .

Before we move to this application, we consider as in the bounded difference
inequality a function

γ :

{
X1 × . . .×Xn → R
(x1, . . . , xn) 7→ γ(x1, . . . , xn) .

We denote by Dn = {X1, . . . , Xn} a set of independent random variables
taking values respectively in X1, . . . ,Xn. We let Fi denote the sigma-algebra
generated by X1, . . . , Xi and denote by

Ki > ‖ sup
x1,...,xn

γ(x1, . . . , xi−1, Xi, xi+1, . . . , xn)−E[γ(x1, . . . , xi−1, Xi, xi+1, . . . , xn)]‖ψ2 .

1. Prove that

γ(X1, . . . , Xn)− E[γ(X1, . . . , Xn)] =
n∑
i=1

∆i ,

where ∆i = E[γ(X1, . . . , Xn)− E[γ(X1, . . . , Xn)|Dn \Xi]|Fi]

2. Prove that, for any s ∈ R,

E
[(
s{γ(X1, . . . , Xn)−E[γ(X1, . . . , Xn)|Dn\Xi]}|Dn\Xi

)]
6 exp

(
C2s2K2

i

)
.

3. Prove that, for any z > 0,

P
(
γ(X1, . . . , Xn)− E[γ(X1, . . . , Xn)] > z

)
6 exp

(
− C2z2∑n

i=1K
2
i

)
.

4. Let T denote a finite space, let X1, . . . , Xn denote independent random
variables such that

Xi = (Xi,t)t∈T , E[Xi,t = 0], ‖ sup
t∈T

Xi,t‖ψ2 6 Ki <∞ .

Prove that, for any z > 0,

P
(

sup
t∈T

Xi,t − E[sup
t∈T

Xi,t] > z
)
6 exp

(
− C2z2∑n

i=1K
2
i

)
.



Chapter 4

Deviation inequalities for
random matrices

This chapter extends the tools we saw in the previous lecture to random
matrices. We start with basic notions of matrix calculus that will be useful
for these extensions. Then, we prove matrix Hoeffding’s inequality, matrix
Bernstein’s inequality and Hanson-Wright’s inequality.

4.1 Calculus on matrices

For any symmetric n× n matrix X, we write its eigenvalues decomposition

X =
n∑
i=1

λiuiu
T
i ,

where the spectrum is ordered so that λ1 > . . . > λn and u1, . . . , un an
orthonormal basis of eigenvectors of X. We also denote by ‖X‖ the operator
norm of any matrix, that is its largest singular value (the sup-norm of its
spectrum if X is symmetric).

Definition 30. Let X =
∑n

i=1 λiuiu
T
i , Y denote two n × n symmetric

matrices and let f : R→ R denote a function. We define

1. X < Y if X − Y is positive semi-definite.

2. f(X) =
∑n

i=1 f(λi)uiu
T
i .

Remark 31. The definition of f(X) extends the one when f is a polynomial.

As an exercise, check the following properties that will be useful in the
remaining of this chapter.

Proposition 32. Let X, X ′ and Y , Y ′ denote two n×n symmetric matrices
and let f and g denote two R→ R functions.

47
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1. If X < Y , Tr(X) > Tr(Y ).

2. If X 4 X ′ and Y 4 Y ′, then X + Y 4 X ′ + Y ′.

3. ‖X‖ 6 t is equivalent to −tI 4 X 4 tI.

4. If f(x) 6 g(x) for any |x| 6 K and ‖X‖ 6 K, then f(X) 4 g(X).

5. If X < Y , XY = Y X and f is non decreasing, f(X) < f(Y ).

6. If X < Y and f is non decreasing, Tr(f(X)) > Tr(f(Y )).

7. If 0 4 X 4 Y , log(X) 4 log(Y ).

4.2 Deviation bounds for sums of independent ran-
dom matrices

In this section, we establish the extension of Hoeffding and Bernstein’s in-
equalities for sums of independent random matrices. The main difficulty in
this extension is that the set of matrices is not commutative so the basic
inequality

exp(X + Y ) = exp(X) exp(Y ) ,

does not hold anymore. As this inequality yields the tensorization property

E
[

exp

(
s
N∑
i=1

Xi

)]
= exp

( N∑
i=1

logE[exp(sXi)]

)
,

we need to work on the extension of this argument. The section therefore
starts with an extension of this argument that is then applied to prove
deviation inequalities for random matrices.

4.2.1 Extension of the tensorization argument

In this section, we establish the following result. Let λ1(A) denote the
largest eigenvalue of A.

Lemma 33 (Tensorization for random matrices). Let X1, . . . , XN denote
independent n× n symmetric random matrices, let s > 0

E
[

exp

(
sλ1

( N∑
i=1

Xi

))]
6 Tr

(
exp

( N∑
i=1

logE
[

exp
(
sXi

)]))
.

Proof. The proof is divided into two lemmas. The first one is completely
elementary.
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Lemma 34. Let X denote a symmetric n × n matrix, we have, for any
s > 0,

exp
(
sλ1(X)

)
6 Tr(exp(sX)) .

Proof of Lemma 34. We first use that x 7→ exp(sx) is non decreasing to say
that

exp
(
sλ1(X)

)
= λ1

(
exp

(
sX
))

.

By Point 4.,
exp

(
sX
)
< 0 .

Therefore,
λ1

(
exp

(
sX
))

6 Tr
(

exp
(
sX
))

.

By Lemma 34, we have thus

exp

(
sλ1

( N∑
i=1

Xi

))
6 Tr

(
exp

(
s
N∑
i=1

Xi

))
. (4.1)

The next step of the proof is the following result known as Lieb’s inequality.

Theorem 35 (Lieb’s inequality for random matrices). For any n× n sym-
metric matrices H deterministic and X random, we have

E[Tr(exp(H +X))] 6 Tr(exp(H + log(E[exp(X)]))) .

We do not prove Lieb’s inequality here, an article providing a proof is
given in Slack. A consequence of this result is the following lemma.

Lemma 36. For any independent n×n symmetric random matrices X1, . . . , XN ,
we have

E
[

Tr

(
exp

(
s

N∑
i=1

Xi

))]
6 Tr

(
exp

( N∑
i=1

log
(
E[exp(sXi)]

)))
.

Proof of Lemma 36. We use recursively Lieb’s inequality conditionally on
Fi = Z1, . . . , Zi−1, Zi+1, . . . , ZN , with Zj = sXj if j 6 i and Zj = logE[exp(sXj)]
if j > i to say that

E
[

Tr

(
exp

( N∑
j=1,j 6=i

Zj + Zi

))
|Fi
]

6 Tr

(
exp

( N∑
j=1,j 6=i

Zj + logE[exp(Zi)|Fi]
))

= Tr

(
exp

( N∑
j=1,j 6=i

Zj + logE[exp(Zi)]

))
,

where the last inequality holds by independence of the Xi.
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Together with (4.1), Lemma 36 proves that

E
[

exp

(
sλ1

( N∑
i=1

Xi

))]
6 Tr

(
exp

( N∑
i=1

logE
[

exp
(
sXi

)]))
.

4.2.2 Matrix deviation inequalities

In this section, we extend Hoeffding and Bernstein’s inequality to sums of
independent random matrices.

Theorem 37 (Matrix Hoeffding’s inequality). Let A1, . . . , AN denote n ×
n symmetric deterministic matrices and let ε1, . . . , εN denote independent
Rademacher random variables. Then, for any z > 0,

P
(∥∥∥∥ N∑

i=1

εiAi

∥∥∥∥ > z

)
6 2n exp

(
− cz2

‖
∑N

i=1A
2
i ‖

)
.

Proof. First, we have that ‖A‖ = max(λ1(A),−λn(A)), where λn(A) is the
smallest eigenvalue of A. We focus on λ1(A) and let the reader check that
the argument generalizes to ‖A‖ up to a union bound. The proof uses
Chernoff’s bound

∀s > 0, P
(
λ1

( N∑
i=1

εiAi

)
> z

)
6 exp(−sz)E

[
exp

(
sλ1

( N∑
i=1

εiAi

))]
.

(4.2)
Then, by tensorization for random matrices

E
[

exp

(
sλ1

( N∑
i=1

εiAi

))]
6 Tr

(
exp

( N∑
i=1

logE
[

exp
(
sεiAi

)]))
. (4.3)

Now, to bound the Laplace transform of a single random matrix X, we use
Point 4 in Proposition 32. First, we use that, for any real number x,

E[exp(εx)] =
1

2
(exp(x) + exp(−x)) =

∑
k>0

x2k

(2k)!
6
∑
k>0

x2k

2kk!
= exp

(
x2

2

)
.

We deduce from this bound and Points 4 and 7 in Proposition 32 that

logE
[

exp
(
sεiAi

)]
4
s2

2
A2
i .

By Point 2 in Proposition 32, we get

N∑
i=1

logE
[

exp
(
sεiAi

)]
6
s2

2

N∑
i=1

A2
i .
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By Point 6 in Proposition 32, we get

Tr

(
exp

( N∑
i=1

logE
[

exp
(
sεiAi

)]))
6 Tr

(
exp

(
s2

2

N∑
i=1

A2
i

))
.

Plugging this into (4.3), we get

E
[

exp

(
sλ1

( N∑
i=1

εiAi

))]
6 Tr

(
exp

(
s2

2

N∑
i=1

A2
i

))

6 n exp

(
s2

2
λ1

( N∑
i=1

A2
i

))
.

Therefore,

E
[

exp

(
sλ1

( N∑
i=1

εiAi

))]
6 n exp

(
s2

2

∥∥∥∥ N∑
i=1

A2
i

∥∥∥∥) . (4.4)

Plugging this into (4.2), we finally get

∀s > 0, P
(
λ1

( N∑
i=1

εiAi

)
> z

)
6 n exp

(
− sz +

s2

2

∥∥∥∥ N∑
i=1

A2
i

∥∥∥∥) .

Optimizing over s > 0 proves the concentration of λ1

(∑N
i=1 εiAi

)
. The

same argument would show the concentration of −λn
(∑N

i=1 εiAi
)

and a
union bound concludes the proof of the theorem.

Let us now turn to Bernstein’s inequality.

Theorem 38 (Matrix Bernstein’s inequality). Let X1, . . . , XN denote inde-
pendent, centered, n × n, symmetric random matrices such that ‖Xi‖ 6 K
a.s.. Then, for any z > 0,

P
(∥∥∥∥ N∑

i=1

Xi

∥∥∥∥ > z

)
6 2n exp

(
− cmin

(
t2

σ2
,
t

K

))
,

with σ2 =
∥∥∑N

i=1 E[X2
i ]
∥∥.

Proof. We focus as in the previous proof on the concentration of λ1

(∑N
i=1Xi

)
.

The proof starts with Chernoff’s bound

∀s > 0, P
(
λ1

( N∑
i=1

Xi

)
> z

)
6 exp(−sz)E

[
exp

(
sλ1

( N∑
i=1

Xi

))]
.
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Then, by tensorization’s bound for random matrices

E
[

exp

(
sλ1

( N∑
i=1

Xi

))]
6 Tr

(
exp

( N∑
i=1

logE
[

exp
(
sXi

)]))
.

Then, we use that, for any |x| 6 K, and |s| 6 1/K,

exp(sx) = 1 + sx+
∑
k>2

(sx)k

k!

6 1 + sx+
s2x2

2(1− |sK|/3)
6 1 + sx+ s2x2 .

By Point 4 in Proposition 32, this implies

exp(sXi) 4 I + sXi + s2X2
i .

Taking expectation on both sides, and using one more time Point 4 in Propo-
sition 32 with the inequality 1 + x 6 exp(x) valid for any x ∈ R, yields

E[exp(sXi)] 4 I + s2E[X2
i ] 4 exp

(
s2E[X2

i ]
)
.

By Point 7 in Proposition 32, this implies

log(E[exp(sXi)]) 4 s2E[X2
i ] .

By Point 2 in Proposition 32, we deduce

N∑
i=1

log(E[exp(sXi)]) 4 s2
N∑
i=1

E[X2
i ] .

By Point 6 in Proposition 32, we get

Tr

(
exp

( N∑
i=1

log
(
E[exp(sXi)])

)))
6 Tr

(
exp

(
s2

N∑
i=1

E[X2
i ]

))
6 n exp

(
s2σ2

)
.

We conclude that, for any |s| 6 K,

P
(
λ1

( N∑
i=1

Xi

)
> z

)
6 n exp

(
− sz + s2σ2

)
.

Optimizing over |s| 6 K shows the deviation inequality for λ1

(∑N
i=1Xi

)
.

The same argument shows the deviation of −λn
(∑N

i=1Xi

)
(check this part!)

and the conclusion follows from a union bound.
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4.3 Applications of Matrix Hoeffding’s inequality

4.3.1 Matrix Khintchine’s inequality

A consequence of Matrix Hoeffding’s inequality is the matrix version of
Khintchine’s inequality.

Theorem 39 (Matrix Khintchine’s inequality). Let A1, . . . , AN denote n×
n symmetric deterministic matrices and let ε1, . . . , εN denote independent
Rademacher random variables. Then

E
[∥∥∥∥ N∑

i=1

εiAi

∥∥∥∥] 6 C
√

1 + log n

∥∥∥∥ N∑
i=1

A2
i

∥∥∥∥1/2

.

Proof. The proof follows by integration of Hoeffding’s inequality and is left
as an exercise.

Khintchine’s inequality admits the following corollary for non necessarily
symmetric matrices.

Corollary 40 (General Matrix Khintchine’s inequality). Let A1, . . . , AN
denote n × p deterministic matrices and let ε1, . . . , εN denote independent
Rademacher random variables. Then,

E
[∥∥∥∥ N∑

i=1

εiAi

∥∥∥∥]

.

√√√√log(p+ n) max

(
sup
x1∈Bp

N∑
i=1

‖ATi x1‖22, sup
x2∈Bn

N∑
i=1

‖Aix2‖22
)
.

Proof. The proof relies on the following trick. For any n × p matrix A, we
denote by

S(A) =

[
0 A
AT 0

]
.

Then, S is a linear map such that, for any n × p matrix A, S(A) is a
symmetric (n+ p)× (n+ p) matrix such that

S(A)2 =

[
AAT 0

0 ATA

]
, ‖S(A)‖ = ‖A‖ . (4.5)
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We have therefore,

E
[∥∥∥∥ N∑

i=1

εiAi

∥∥∥∥] = E
[∥∥∥∥S( N∑

i=1

εiAi

)∥∥∥∥] by (4.5)

= E
[∥∥∥∥ N∑

i=1

εiS
(
Ai
)∥∥∥∥]

6 C
√

log(p+ n)

∥∥∥∥ N∑
i=1

S(Ai)
2

∥∥∥∥1/2

Khintchine .

Finally, for any x = (xT1 , x
T
2 )T in Rn × Rp \ {0},

xT
N∑
i=1

S(Ai)
2x =

N∑
i=1

‖ATi x1‖22 +

N∑
i=1

‖Aix2‖22

= ‖x‖22
(
λ

N∑
i=1

∥∥∥∥ATi x1

‖x1‖2

∥∥∥∥2

2

+ (1− λ)

N∑
i=1

∥∥∥∥Ai x2

‖x2‖2

∥∥∥∥2

2

)
,

with λ = ‖x1‖22/‖x‖22, thus 1− λ = ‖x2‖22/‖x‖22, using the convention 0/0 =
0.

4.3.2 Application to Matrix completion

A classical application of Matrix Khintchine’s inequality is the problem of
Matrix completion. Suppose we want to recover a n×p matrix X based the
observation of the matrix Y with entries yi,j = δi,jxi,j , where δi,j are i.i.d.
Bernoulli B(q) random variables, where 0 < q 6 1/2. The key assumption
for this task to be feasible is to assume that X has low rank r. The main
idea behind the algorithm for matrix completion is to approximate

X̂ ∈ argminr(Z)6r ‖q−1Y − Z‖ .

X̂ is not an estimator unless we know r and the optimization problem is
computationally hard due to the constraints r(Z) 6 r so convex relaxations
are necessary to actually approximate X̂. Yet, to understand the relevance
of this strategy, we bound here the performance of X̂.

The key remark is that, by construction

‖X̂ −X‖ 6 ‖X̂ − q−1Y ‖+ ‖q−1Y −X‖ 6 2

q
‖Y − qX‖ .

Moreover,
Y − qX = ((δi,j − q)xi,j)16i6n,16j6p .

As Y − qX is centered, we can apply the following symmetrization lemma.
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Lemma 41 (Symmetrization). Let (X1,t)t∈T , . . . , (Xn,t)t∈T denote indepen-
dent processes indexed by a separable space T such that E[Xi,t] = 0 for any
i and t. Let ε1, . . . , εn denote independent Rademacher random variables,
then

E
[

sup
t∈T

n∑
i=1

Xi,t

]
6 2E

[
sup
t∈T

n∑
i=1

εiXi,t

]
.

Proof. We introduce (X ′1,t)t∈T , . . . , (X
′
n,t)t∈T independent from the processes

D = {(X1,t)t∈T , . . . , (Xn,t)t∈T } and with the same distribution, so

sup
t∈T

n∑
i=1

Xi,t = sup
t∈T

n∑
i=1

Xi,t − E[X ′i,t|D] 6 E
[

sup
t∈T

n∑
i=1

Xi,t −X ′i,t|D
]
.

Taking expectation on both sides, we get

E
[

sup
t∈T

n∑
i=1

Xi,t

]
6 E

[
sup
t∈T

n∑
i=1

Xi,t −X ′i,t
]
.

Now we use that the processes (X1,t − X ′1,t)t∈T , . . . , (Xn,t − X ′n,t)t∈T and
(ε1(X1,t −X ′1,t))t∈T , . . . , (εn(Xn,t −X ′n,t))t∈T have the same distribution to
say that

E
[

sup
t∈T

n∑
i=1

Xi,t −X ′i,t
]

= E
[

sup
t∈T

n∑
i=1

εi(Xi,t −X ′i,t)
]
.

We conclude saying that

E
[

sup
t∈T

n∑
i=1

εi(Xi,t −X ′i,t)
]
6 E

[
sup
t∈T

n∑
i=1

εiXi,t

]
+ E

[
sup
t∈T

n∑
i=1

(−εi)Xi,t

]
,

and the fact that εi and −εi have the same distributions.

A consequence of the symmetrization lemma for random matrices is that,
if A1, . . . , AN are independent random matrices such that E[Ai] = 0, then

E
[∥∥∥∥ N∑

i=1

Ai

∥∥∥∥] 6 2E
[∥∥∥∥ N∑

i=1

εiAi

∥∥∥∥] .

For matrix completion, this yields

E[‖Y − qX‖] 6 2E
[∥∥∥∥ n∑

i=1

p∑
j=1

εi,j(δi,j − p)xi,jEi,j
∥∥∥∥] ,

where Ei,j = eie
T
j is the canonical basis of n× p matrices.
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We can now apply Khintchine’s inequality conditionally on all δi,j and
for this, let u ∈ Bp, we have

Ei,ju = ujei ,

thus

n∑
i=1

p∑
j=1

‖εi,j(δi,j − q)xi,jEi,ju‖22 =

n∑
i=1

p∑
j=1

(δi,j − q)2x2
i,ju

2
j

6 max
j∈{1,...,p}

n∑
i=1

(δi,j − q)2x2
i,j .

Now, we introduce Cj(X), the j-th column of X and we have, by Bernstein’s
inequality

E[ max
j∈{1,...,p}

n∑
i=1

(δi,j − q)2x2
i,j ] . q max

j∈{1,...,p}
‖Cj(X)‖22 + log p‖X‖2∞ .

Proceeding similarly for the lines, we get finally

E[‖X̂ −X‖]

.
√

log(n+ p) max

(
maxi ‖Li(X)‖2√

q
,
maxj ‖Cj(X)‖2√

q
,

√
log(n+ p)‖X‖∞

q

)
.

Finally, using the fact that both X and X̂ have rank r, we have

‖X̂ −X‖2F 6 2r‖X̂ −X‖2 ,

thus

E[‖X̂ −X‖2F ]

. r log(n+p) max

(
maxi ‖Li(X)‖22

q
,
maxj ‖Cj(X)‖22

q
,
log(n+ p)‖X‖2∞

q2

)
.

Using the rough bound ‖Li(X)‖22 6 p‖X‖2∞ and ‖Cj(X)‖22 6 n‖X‖∞, we
deduce that, if npq > r(n+ p) log(n+ p), we have

1

np
E[‖X̂ −X‖2F ] 6 C

r(n+ p) log(n+ p)

npq
‖X‖2∞ .

Informally, if the number of observations npq exceeds the number of param-
eters r(n + p) by a logarithmic factor, matrix recovery is possible in the
sense that the average error in the L2-sense 1

npE[‖X̂ −X‖2F ] is smaller than

the size of the original matrix ‖X‖2∞.
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4.4 Applications of Matrix Bernstein’s inequality

Theorem 42. Let M denote a n× p random matrix with independent cen-
tered rows MT

i such that ‖Mi‖2 6 K a.s.. Then, for any ε ∈ (0, 1) and
η ∈ (0, 1), with probability larger than 1− ε,

‖MTM− E[MTM]‖ 6 η‖E[MTM]‖+
C

η
K2 log(p/ε) .

Proof. We write B2 = {u ∈ Rp : ‖u‖2 6 1} and, for any u ∈ B2,

uTMTMu = ‖(〈Mi, u〉)‖22 =

n∑
i=1

〈Mi, u〉2 = uT (

n∑
i=1

MiM
T
i )u .

This proves that MTM =
∑n

i=1 MiM
T
i is a sum of independent symmetric

random p × p matrices. Besides, these matrices satisfy, for any u ∈ B2, by
Cauchy-Schwarz inequality,

uTMiM
T
i u = 〈Mi, u〉2 6 ‖Mi‖22 6 K2 .

The last inequality holds a.s. By the matrix Bernstein’s inequality, it follows
therefore that, for any t > 0,

P
(∥∥MTM− E[MTM]

∥∥ > t
)
6 2p exp

(
− cmin

(
t2

σ2
,
t

K

))
,

where

σ2 =

∥∥∥∥ n∑
i=1

E[MiM
T
i MiM

T
i ]

∥∥∥∥
=

∥∥∥∥ n∑
i=1

E[‖Mi‖22MiM
T
i ]

∥∥∥∥
6 K2

∥∥∥∥ n∑
i=1

E[MiM
T
i ]

∥∥∥∥
= K2

∥∥E[MTM]
∥∥ .

For the second application, we go back to the community detection prob-
lem presented in Chapter 2. We presented the spectral clustering algorithm
in this chapter to solve the problem and provided an error bound for the
proportion of misclassified nodes under a control on the spectral norm of
A− E[A], where A is the adjacency matrix of the observed random graph.
Our purpose here is to provide a control on this spectral norm using matrix
Bernstein’s inequality.



58CHAPTER 4. DEVIATION INEQUALITIES FOR RANDOMMATRICES

Theorem 43. Let A denote the adjacency matrix of the graph of a balanced
2-classes SBM with size 2n and parameters p and q. Then, for any ε ∈ (0, 1),
with probability at least 1− ε,

‖A− E[A]‖ 6 C log(n/ε) .

Proof. We denote by ei,j the canonical basis of the (2n) × (2n) matrices.
We can write

A =
2n∑
i=1

Bi,iei,i +
∑

16i<j62n

Bi,j(ei,j + ej,i) ,

where Bi,j are independent Bernoulli variables with parameter p if i and j
belong to the same community and q if they belong to different communities.
Therefore, A − E[A] is a sum of independent, centered, random matrices
with spectra bounded by 1. By the matrix Bernstein’s inequality, it follows
therefore that, for any t > 0,

P(‖A− E[A]‖ > t) 6 4n exp(−cmin(t2/σ2, t)) ,

where

σ2 =

∥∥∥∥ n∑
i=1

pei,i +
∑

16i<j62n

E[Bi,j ](ei,j + ej,i)
2

∥∥∥∥
=

∥∥∥∥ n∑
i=1

pei,i +
1

2

2n∑
i=1

n∑
j=1,j 6=i

E[Bi,j ](ei,i + ej,j)

∥∥∥∥
=

∥∥∥∥1

2

2n∑
i,j=1

E[Bi,j ](ei,i + ej,j)

∥∥∥∥
=

∥∥∥∥ 2n∑
i=1

ei,i

n∑
j=1

E[Bi,j ]

∥∥∥∥
= n(p+ q) .

4.5 Decoupling and quadratic forms

In this section, we prove tools to show the concentration of the linear func-
tion

〈A,X〉 ,

when X is a Gram Matrix, that is, a matrix whose entries are of the form
〈Xi, Xj〉 with independent vectors X1, . . . , Xn taking values in a Hilbert
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space H. The final result is given in the problem concluding the chapter.
Remark that these matrices cannot be written

∑N
i=1Xi with independent

random matrices Xi, so this result is different from the ones considered in
the previous sections. Let thus A denote a n× n symmetric matrix A with
null diagonal and independent centered random vectors X1, . . . , Xn taking
values in a Hilbert space (H, 〈·, ·〉), we are interested in the concentration of

〈A,X〉 =
∑

16i 6=j6n
Ai,j 〈Xi, Xj〉 .

The tricky part is that these random variables are not independent and
to proceed, we are going to see an elegant and powerful argument called
decoupling that allows to replace the variables Xj by independent copies
X ′j .

4.5.1 Decoupling

Theorem 44 (Decoupling). For any convex function F : R→ R, we have

E
[
F

( ∑
16i 6=j6n

Ai,j 〈Xi, Xj〉
)]

6 E
[
F

(
4
∑

16i 6=j6n
Ai,j

〈
Xi, X

′
j

〉)]
,

where X ′1, . . . , X
′
n are independent copies of X1, . . . , Xn.

Proof. The proof is decomposed in several elementary steps.
Step 1: For every random variables Y and Z such that E[Z|Y ] = 0, we

have, by Jensen’s inequality

E[F (Y )] = E[F (Y + E[Z|Y ])] 6 E[F (Y + Z)] .

Step 2: Let B1, . . . , Bn denote independent Bernoulli B(1/2) random
variables, independent for X1, . . . , Xn. Let I = {i ∈ {1, . . . , n} : Bi = 1}.
We have∑

16i 6=j6n
Ai,j 〈Xi, Xj〉 =

∑
16i 6=j6n

4EB[Bi(1−Bj)]Ai,j 〈Xi, Xj〉

= 4EB
[ ∑

16i 6=j6n
Bi(1−Bj)Ai,j 〈Xi, Xj〉

]

= 4EI
[∑
i∈I

∑
j∈Ic

Ai,j 〈Xi, Xj〉
]
.

Using Jensen’s inequality once again, we get that

E
[
F

( ∑
16i 6=j6n

Ai,j 〈Xi, Xj〉
)]

6 EXEI
[
F

(
4
∑
i∈I

∑
j∈Ic

Ai,j 〈Xi, Xj〉
)]

= EIEX
[
F

(
4
∑
i∈I

∑
j∈Ic

Ai,j 〈Xi, Xj〉
)]

.
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Step 3: Conditionally on I, the random variables∑
i∈I

∑
j∈Ic

Ai,j 〈Xi, Xj〉 ,
∑
i∈I

∑
j∈Ic

Ai,j
〈
Xi, X

′
j

〉
,

have the same distribution, so

E
[
F

( ∑
16i 6=j6n

Ai,j 〈Xi, Xj〉
)]

6 EIEX
[
F

(
4
∑
i∈I

∑
j∈Ic

Ai,j
〈
Xi, X

′
j

〉 ]
.

(4.6)

Now, for every I, J ⊂ {1, . . . , n}, we write

Q(I, J) =
∑
i∈I

∑
j∈J

Ai,j
〈
Xi, X

′
j

〉
.

For any I ⊂ Tn = {1, . . . , n}

Q(Tn, Tn) = Q(I, Ic) +Q(Ic, Ic) +Q(Tn, I) ,

where

E[Q(Ic, Ic)|Q(I, Ic)] = 0, E[Q(Tn, I)|Q(I, Ic) +Q(Ic, Ic)] = 0 .

Therefore, using Step 1 twice, for any I ⊂ Tn,

E
[
F

(
4
∑
i∈I

∑
j∈Ic

Ai,j
〈
Xi, X

′
j

〉 ]
= E[F (4Q(I, Ic))]

6 E[F (4(Q(I, Ic) +Q(Ic, Ic)))]

6 E[F (4Q(Tn, Tn))] .

As this is true for any value of I, it is true by taking the expectation with
respect to I. Plugging this result into (4.6) yields the result.

4.5.2 Concentration of Gaussian Chaos

In this section, we prove two results in the Gaussian case. The first one is
a basic application of Bernstein’s inequality for sums of Gaussian random
variables that will be used as a technical tool in the following.

Theorem 45. Let (g1, g
′
1), . . . , (gn, g

′
n) denote n independent couples of Gaus-

sian random variables and let s = (s1, . . . , sn)T ∈ Rn. Then,
∑n

i=1 sigig
′
i is

(b, σ2)-sub-Gamma, where b = C‖s‖∞ and σ2 = C‖s‖22. In particular, for
any z > 0,

P
( n∑
i=1

sigig
′
i > z

)
6 exp

(
− cmin

(
z2

‖s‖22
,

z

‖s‖∞

))
.
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Proof. As gi and g′i are sub-Gaussian, sigig
′
i is sub-Exponential with ‖sigig′i‖ψ1 =

Cs2
i . The result thus follows from Corollary 28.

We can now move to the proof of the concentration of Gaussian Chaos.

Theorem 46 (Concentration of Gaussian Chaos). Let A denote a n × n
matrix and let g, g′ denote two standard Gaussian vectors. Then, gTAg′ is
(b, σ2) sub-Gamma, where b = C‖A‖ and σ2 = C‖A‖2F . In particular, for
any z > 0,

P
(
gTAg′ > z

)
6 exp

(
− cmin

(
z2

‖A‖2F
,
z

‖A‖

))
.

Proof. Let A =
∑n

i=1 siuiv
T
i denote the SVD of A, so

gTAg′ =

n∑
i=1

si 〈g, ui〉
〈
g′, vi

〉
.

The result then follows from the previous lemma, using independence of the
couples of standard Gaussian random variables (gi, g

′
i), where gi = 〈g, ui〉

and g′i = 〈g′, vi〉.

4.5.3 Hanson-Wright’s inequality

Hanson-Wright’s inequality is an extension of the previous result to the
case where Xi are not necessarily standard Gaussian but are sub-Gaussian
random variables. Let X = (X1, . . . , Xn)T denote a vector in Rn with
independent sub-Gaussian entries and let A denote a n × n deterministic
matrix with 0 entries in the diagonal. We are interested in the concentration
of

XTAX =
∑

16i 6=j6n
ai,jXiXj ,

The following theorem is known as Hanson-Wright’s inequality.

Theorem 47. Assume that X1, . . . , Xn are independent and that each Xi

is K-sub-Gaussian. Then, for any z > 0,

P
(
XTAX > z

)
6 2 exp

(
− cmin

(
z2

K4‖A‖2F
,

z

K2‖A‖

))
.

Proof. We can assume by homogeneity that K = 1. The first step of the
proof is to use decoupling to get, for any s ∈ R,

E
[

exp
(
sXTAX

)]
6 E

[
exp

(
4sXTAX ′

)]
.
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The second step is to move from sub-Gamma random variables to Gaus-
sian ones. Let G,G′ denote independent standard Gaussian vectors in Rn,
independent from X,X ′. We have, for any vector u ∈ Rn,

E[exp(〈u,X〉)] =
n∏
i=1

E[exp(uiXi)] 6
n∏
i=1

exp(Cu2
i ) 6 exp(C‖u‖22) .

Thus, for any s > 0,

EX
[

exp
(
sXTAX ′

)]
= EX [exp(

〈
X, sAX ′

〉
)]

6 exp(Cs2‖AX ′‖22)]

= EG
[

exp
(
CsGTAX ′

)]
.

Reproducing the argument proves that

E
[

exp
(
4sXTAX ′

)]
6 E

[
exp

(
CsGTAG′

)]
.

The third and last step is to bound the Laplace transform of Gaussian Chaos.
By Theorem 46, we have, for any |s| < 1/C‖A‖,

E[exp(sGTAG′)] 6 exp(Cs2‖A‖2F ) .

In particular thus, for any |s| < 1/(C‖A‖),

E
[

exp
(
sXTAX

)]
6 exp(Cs2‖A‖2F ) .

This means that XTAX is (C‖A‖, C‖A‖2F )-sub-Gamma and the result fol-
lows therefore from Bernstein’s inequality Theorem 25.

4.5.4 Problem

The question we investigate in this problem is the following. Let X1, . . . , Xn

denote independent random vectors of Rd satisfying E[Xi] = 0 and the
following sub-Gaussian assumption: there exists a symmetric matrix Γ such
that

∀u ∈ Rd, E
[

exp(〈u,Xi〉)
]
6 exp(uTΓu) .

Let A = (ai,j) denote a n × n deterministic matrix with 0 in the diagonal.
We are interested in this problem in providing concentration bounds for

Z =
n∑

i 6=j=1

ai,j 〈Xi, Xj〉 .

1. Denote by X ′1, . . . , X
′
n independent copies of X1, . . . , Xn. Prove that,

for any sufficiently small s ∈ R,

E
[

exp
(
sZ
)]

6 E
[

exp

(
4s

∑
16i 6=j6n

ai,j
〈
Xi, X

′
j

〉)]
.
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2. Let g1, . . . , gn, g
′
1, . . . , g

′
n denote independent standard Gaussian vec-

tors. Show that there exists a numerical constant C such that, for any
sufficiently small s ∈ R,

E
[

exp

(
s
∑

16i 6=j6n
〈Xi, Xj〉

)]
6 E

[
exp

(
Cs

∑
16i 6=j6n

ai,j
〈
Γgi, g

′
j

〉)]
.

3. Prove that there exist independent standard Gaussian vectorsG1, . . . , Gd,
G′1, . . . , G

′
d in Rn and non negative real numbers λ1, . . . , λd such that

∑
16i 6=j6n

ai,j
〈
Γgi, g

′
j

〉
=

d∑
k=1

λkG
T
kAG

′
k .

4. Prove that, for any z > 0,

P(Z > z) 6 exp

(
− C min

(
z2

σ2
,
z

b

))
,

where
σ2 = ‖Γ‖2F ‖A‖2F , b = ‖Γ‖‖A‖ .
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Chapter 5

PAC-Bayesian bounds

In the first part of this chapter, we consider a random vector X such that
E[X] = 0. The vector X defines the linear process Xt = 〈X, t〉 that we can
bound using chaining arguments as will be seen in Chapter 6, . This allows
to obtain deviation bounds for suprema of Xt over some sets T . This chapter
explains how to prove similar deviation inequalities using the PAC-Bayesian
approach. We know that each Xt concentrates if ‖Xt‖ψα 6 K, where α ∈
{1, 2} using the methods of Chapter 3. The Pac-Bayesian approach allows to
go from the concentration of each Xt to deviation inequalities for supt∈T Xt

when T is an ellipsöıd. Although less general than chaining methods, this
approach yields tighter constants and is sometimes much easier to develop
in examples.

In a second part of the chapter, we extend the PAC-Bayesian approach
to prove deviation inequalities for the operator norm of random matrices.

5.1 Setting

In the first sections of the chapter, X is a random vector of Rd such that
E[X] = 0. Besides, we will use repeatedly the following definitions.

Definition 48. The vector X is called K-sub-Gaussian if, for any t in the
sphere S ⊂ Rd and any s ∈ R, E[exp(s 〈X, t〉)] 6 exp(s2K2). It is called
(b,K)-sub-Gamma if, for any t ∈ S and any s 6 1/b, E[exp(s 〈X, t〉)] 6
exp(s2K2).

When X is sub-Gaussian (resp. sub-Gamma), the concentration of each
Xt = 〈X, t〉 is derived from Hoeffding’s (resp. Bernstein’s) inequality. We
want to make these deviations uniform over an ellipsöıd T ⊂ Rd. For this,
we use a Bayesian approach in the sense that we assume that the process
Xt is evaluated at a random parameter θ. This parameter will always be
assumed independent from the vector X and we will consider several possible
distributions (ρt)t∈T for θ. With this approach, we replace the problem

65
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of bounding the probability of an event {∀t ∈ T, . . .} by the problem of
bounding the supremum of expectations of functions over all ρ ∈ (ρt)t∈T .

There exists a way to bound the expectation of a random variable w.r.t.
several probability measures. Given a probability distribution µ on Rd, we
will prove in the following section (see Lemma 49) a variational formula
which states that, for any function g : Rd → R,

exp

(
sup
ρ4µ

Eρ[g(θ)]−K(ρ, µ)

)
= Eµ[exp(g(θ))] , (5.1)

where K(ρ, µ) =
∫

log(dρ/dµ)dρ stands for the Küllback-Leibler divergence.
Consider now the function g(θ) = s 〈X, θ〉 − logEX [exp(s 〈X, θ〉)] (here

and in the following, for any function f(X, θ) we denote by EX [f(X, θ)] the
expectation of f with respect to the distribution of X and by Eρ[f(X, θ)] the
expectation w.r.t. θ ∼ ρ, assuming always that X and θ are independent).
This function satisfies

exp(g(θ)) =
exp(s 〈X, θ〉)

EX [exp(s 〈X, θ〉)]
,

so EX [exp(g(θ))] = 1 and therefore EX [Eµ[exp(g(θ))]] = Eµ[EX [exp(g(θ))]] =
1 and, for any z > 0,

PX(Eµ[exp(g(θ))] > exp(z)) 6 exp(−z) .

On the other hand, the variational formula implies that

logEµ[exp(g(θ))] = sup
ρ4µ

Eρ[g(θ)]−K(ρ, µ) ,

thus, for any z > 0,

PX(sup
ρ4µ

Eρ[g(θ)]−K(ρ, µ) > z) = PX(Eµ[exp(g(θ))] > exp(z)) 6 exp(−z) .

Replacing by the expression of g(θ), we get that

PX
(
∀t ∈ T, sEρt [〈X, θ〉] 6 Eρt [logEX [exp(s 〈X, θ〉)]]+K(ρt, µ)+z

)
6 exp(−z) .

We can readily see here why this formula can be interesting. For any dis-
tribution ρt centered at t, we have in particular Eρt [〈X, θ〉] = 〈X,Eρt [θ]〉 =
〈X, t〉. Besides, the assumption that the vector X is sub-Gaussian (resp.
sub-Gamma) yields that

logEX [exp(s 〈X, θ〉)] 6 K2s2‖θ‖22, ∀θ ∈ Rd, s ∈ R ,

(resp. ∀θ ∈ Rd, s ∈ R : |s|‖θ‖ 6 1/b).
Therefore, if ρt are centered at t, we get that, for any z > 0,

PX
(
∀t ∈ T, 〈X, t〉 6 sK2Eρt [‖θ‖22] +

K(ρt, µ) + z

s

)
6 exp(−z) .

This inequality is valid for any distribution µ and either
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• in the sub-Gaussian case, for any probability distributions ρt and any
s ∈ R or,

• in the sub-Gamma case, for any r > 0, for any probability distribution
ρt supported in the ball B(0, r) and all |s| 6 1/rb.

In all cases, we see that we have to pick distributions ρt centered at t and
such that Eρt [‖θ‖22] = ‖t‖22 + Eρt [‖θ − t‖22] can easily be computed. Then,
we can choose µ such that all Küllback divergences K(ρt, µ) can be upper
bounded.

In the following, we first establish the basic tools mentioned in this sec-
tion, then show that Gaussian priors can be used in the sub-Gaussian case
and build truncated Gaussian for the exponential case.

5.2 Basic tools

For any probability measures ρ and µ on a measurable space Ω, we denote
by ρ 4 µ if ρ is absolutely continuous with respect to µ. When ρ 4 µ, we
also denote the KL divergence by

K(ρ, µ) =

∫
log

(
dρ

dµ

)
dρ .

PAC-Bayesian approach builds on a variational formula for entropies that
reads as follows:

Lemma 49 (Variational fomula). Let (Ω, µ) denote a probability space and
let g denote a real valued function on Θ such that logEµ[exp(g(θ))] < +∞.
Then, for any ρ 4 µ, we have

logEµ[exp(g(θ))] > Eρ[g(θ)]−K(ρ, µ) .

Besides, the probability distribution such that dρ/dµ = exp(g)/Eµ[exp(g(θ))]
satisfies

logEµ[exp(g(θ))] = Eρ[g(θ)]−K(ρ, µ) .

Hence, we have

logEµ[exp(g(θ))] = sup
ρ:ρ4µ

{
Eρ[g(θ)]−K(ρ, µ)

}
.

Proof. The proof is elementary: For the first item, write f = dρ/dµ so
K(ρ, µ) = Eρ[log(f(θ))]. Then, remark that

logEµ[exp(g(θ))] > log

∫
θ:f(θ)6=0

exp(g(θ))

f(θ)
dρ(θ) = logEρ

[
exp(g(θ))

f(θ)
1f(θ)6=0

]
.
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Thus, by Jensen’s inequality

logEµ[exp(g(θ))] > Eρ
[
g(θ)− log

(
f(θ)

)]
= Eρ[g(θ)]−K(ρ, µ) .

For the second item, we compute directly

log

(
dρ

dµ

)
= g(θ)− log(Eµ[exp(g(θ))]) ,

so
K(ρ, µ) = Eρ[g(θ)]− log(Eµ[exp(g(θ))]) ,

which is equivalent to the result.

5.3 Sub-Gaussian vectors

In this section, we show why the general PAC-Bayesian bound allows to
derive the concentration of the linear process we met in Section 5.1. As
precise constants can be obtained using the PAC-Bayesian approach, we
specify here the constants in the sub-Gaussian assumption. Let X denote a
random vector in Rd such that, for any t ∈ Rd,

E[exp(〈t,X〉)] 6 exp

(
‖t‖22

2

)
.

Let T denote the ellipsoid described by the positive definite matrix Γ by the
formula

T = Γ1/2B2 = {t ∈ Rd : ‖Γ−1/2t‖2 = ‖t‖Γ−1 6 1} .

The goal here is to obtain deviation bounds for supt∈T 〈X, t〉.
Recall that, if X is a standard Gaussian vector, the Gaussian concentra-

tion inequality implies that, for any z > 0, w.p.a.l. 1− 2 exp(−z),

sup
t∈T
〈X, t〉 6

√
Tr(Γ) +

√
2‖Γ‖z . (5.2)

5.3.1 Choice of µ and ρ’s

In this section, we show that Gaussian distributions can be used as priors.
Let Σ denote a non singular positive matrix and choose µ to be the Gaussian
distribution N(0,Σ) and, for any t ∈ T , we let ρt denote the Gaussian
distribution N(t,Σ) (centered at t with the same variance as µ). With these
choices, it is indeed easy to compute the Küllback-Leibler divergence. We
have

log

(
dρt(x)

dµ(x)

)
= log

(
exp

(‖x‖2Σ−1 − ‖x− t‖2Σ−1

2

))
=

1

2

(
2 〈x− t, t〉Σ−1 + ‖t‖2Σ−1

)
.



5.3. SUB-GAUSSIAN VECTORS 69

Taking the expectation w.r.t. x ∼ ρt in the expression yields directly

K(ρt, µ) =
1

2
‖t‖2Σ−1 .

5.3.2 Bounding the second moment

For any t ∈ T ,

Eρt [‖θ‖22] = ‖t‖22 + Eρt [‖θ − t‖22] = ‖t‖22 + Tr(Σ) ,

where the last inequality directly follows from ‖θ−t‖22 = Tr
(
(θ−t)(θ−t)T

)
.

5.3.3 Conclusion

The Pac-Bayesian bound directly implies in this case that, for any z > 0,
with probability larger than 1 − exp(−z), we have, simultaneously for all
t ∈ T ,

s 〈X, t〉 6 s2

2

(
‖t‖22 + Tr(Σ)

)
+

1

2
‖t‖2Σ−1 + z .

This result holds for any s > 0 and any non singular Σ < 0.
Let us specify now Σ = Γ/β, where β > 0. We deduce that, for any

z > 0, with probability larger than 1 − exp(−z), we have, simultaneously
for all t ∈ T ,

〈X, t〉 6 s

2

(
‖t‖22 +

1

β
Tr(Γ)

)
+
β

2s
‖t‖2Γ−1 +

z

s
.

Using the definition of T , we get

〈X, t〉 6 s

2

(
‖t‖22 +

1

β
Tr(Γ)

)
+
β

2s
+
z

s
.

We let s > 0 free and choose β = s
√

Tr(Γ) to get

〈X, t〉 6
√

Tr(Γ) +
s

2
‖t‖22 +

z

s
.

Finally, we optimize the choice of s =
√

2z/‖t‖2 to get

∀z > 0, P
(
∀t ∈ T, 〈X, t〉 6

√
Tr(Γ)+‖t‖2

√
2z
)
> 1−exp(−z) . (5.3)

This bound directly implies (5.2). An interesting feature is that we
recover this bound from the general Pac-Bayesian bound up to the constants.
To the best of our knowledge, this is the only approach showing this bound
with tight constants for sub-Gaussian random vectors.

On the other hand, it does not seem easy to extend the result beyond
ellipsoids to cover the case of a general subset T ⊂ Rd.
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5.4 Sub-exponential random vectors

In this section we consider vectors such that

∀t ∈ S, ∀|s| 6 1/b, E[exp(s 〈t,X〉)] 6 exp(s2K2) . (5.4)

For these vectors, the general approach developed in Section 5.1 shows
that, for any r > 0, as long as ρt is centered at t and supported on a ball
centered at t with radius r, for any |s| < 1/b(r+ supt∈T ‖t‖2), for any z > 0,

PX
(
∀t ∈ T, 〈X, t〉 6 CsK2Eρt [‖θ‖22] +

K(ρt, µ) + z

s

)
6 exp(−z) .

As in the previous section, T denote the ellipsoid described by the positive
definite matrix Γ by the formula

T = Γ1/2B2 = {t ∈ Rd : ‖Γ−1/2t‖2 = ‖t‖Γ−1 6 1} .

5.4.1 Priors

We define for ρt the truncated Gaussian defined for any t ∈ T , a radius r and
non-singular covariance matrix Σ to be specified later by the distribution
with density

ft(x) =
1

(
√

2π)d
√

det(Σ)Cr
exp

(
− 1

2
(x− t)TΣ−1(x− t)

)
1{‖x−t‖26r} ,

with normalizing constant Cr = P(N(0,Σ) ∈ B(0, r)). Remark first that,
as the density ft is symmetric around t, this distribution is centered at
t as expected. As mentioned earlier, the key is to be able to bound the
second moment of these measures and choose a prior measure µ for which
the Küllback divergences K(ρt, µ) can be uniformly bounded.

Start with the second moment. As ρt is centered at t, we have

Eρt [‖θ‖22] = ‖t‖22 + Eρ0 [‖θ‖22] .

Then, denoting by ϕ the density of the Gaussian distribution N(0,Σ) and
by G ∼ N(0, I) , we have

Eρ0 [‖θ‖22] =
1

Cr

∫
B(0,r)

‖x‖22ϕ(x)dx 6
1

Cr
E[‖Σ1/2G‖22] =

1

Cr
Tr(Σ) .

Moving to the Küllback divergence, we denote by µ = N(0,Σ), so

dρt(x)

dµ(x)
=

1

Cr
exp

(
1

2

(
‖x‖Σ−1 − ‖x− t‖2Σ−1

))
1{‖x−t‖26r}

=
1

Cr
exp

(
〈x− t, t〉Σ−1 +

1

2
‖t‖2Σ−1

)
1{‖x−t‖26r} .
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Integrating the logarithm of this expression and using again that ρt is cen-
tered in t, we get

K(ρt, µ) 6 Cr

(
log

(
1

Cr

)
+

1

2
‖t‖2Σ−1

)
6

1

e
+

1

2
‖t‖2Σ−1 .

5.4.2 Conclusion

We choose Σ = Γ/β for a parameter β to be chosen later. By (5.3), Cr > 1/2
if r =

√
Tr(Γ)/β +

√
‖Γ‖ log(1/2)/β 6 2

√
Tr(Γ)/β = r0. We have thus, for

r = r0, β > 0 and |s| 6 1/b(r0 +
√
‖Γ‖), for any z > 0,

PX
(
∀t ∈ T, 〈X, t〉 6 sK2

(
‖Γ‖+

Tr(Γ)

β

)
+
β + 1 + z

s

)
6 exp(−z) .

We choose s = [α(
√

Tr(Γ)/β +
√
‖Γ‖)]−1, with α > b, we have, with prob-

ability larger than 1− exp(−z),

∀t ∈ T, 〈X, t〉 6
(√
‖Γ‖+

√
Tr(Γ)

β

)(
K2

α
+ α(β + 1 + z)

)
. (5.5)

Define now the effective rank

r(Γ) =
Tr(Γ)

‖Γ‖
.

We consider two possible situations: Either r(Γ) + 1 + z 6 (K/b)2 or r(Γ) +
1 + z > (K/b)2.

Let us start with the case where r(Γ) + 1 + z 6 (K/b)2. We choose
β = r(Γ). We get, ∀t ∈ T ,

〈X, t〉 6 2
√
‖Γ‖

(
K2

α
+ α(r(Γ) + 1 + z)

)
.

There, we choose α = K/
√
r(Γ) + 1 + z > b and we have, with probability

larger than 1− exp(−z),

∀t ∈ T, 〈X, t〉 6 4K
√

Tr(Γ) + ‖Γ‖(1 + z) .

Let us now move to the case where r(Γ) + 1 + z > (K/b)2. We further
divide this case into two disjoint situations: Either 1+z 6 (K/b)2 or 1+z >
(K/b)2. Start with 1 + z 6 (K/b)2 so b 6 K/

√
1 + z. We choose β = 1 + z,

α = K/
√

1 + z to get, ∀t ∈ T ,

〈X, t〉 6 3K
√

1 + z

√
‖Γ‖

(
1 +

r(Γ)

1 + z

)
= 3K

√
Tr(Γ) + ‖Γ‖(1 + z) .
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Finally, consider the case 1 + z > (K/b)2. Choose β = 1 + z, α = b to
get, for all t ∈ T ,

〈X, t〉 6
(√
‖Γ‖+

√
Tr(Γ)

1 + z

)(
K2

b
+ 2b(1 + z)

)
6 3b(1 + z)

(√
‖Γ‖+

√
Tr(Γ)

1 + z

)
= 3b

(√
Tr(Γ)(1 + z) +

√
‖Γ‖(1 + z)

)
.

In all cases, we conclude that, with probability larger than 1− exp(−z),

sup
t∈T
〈X, t〉 6

√
‖Γ‖

(
4K
√
r(Γ)+

√
1 + z(4K∨3b

√
r(Γ))+3b(1+z)

)
. (5.6)

5.5 Extension to random matrices

In this section, we are interested in the extension of the previous results to
the case where X is a random n× p matrix such that E[X] = 0. Let EU and
EV denote two ellipsöıds: given two symmetric and non singular matrices
ΓU and ΓV , let

EU = {u ∈ Rn : ‖Γ−1/2
U u‖2 6 1}, EV = {v ∈ Rp : ‖Γ−1/2

V v‖2 6 1} .

We are interested in this section in providing upper bounds on

sup
u∈EU ,v∈EV

uTXv = sup
u∈EU ,v∈EV

〈
X, vuT

〉
F

,

that hold with high probability.

5.5.1 Probabilistic assumption

We are particularly interested in the case where X =
∑n

i=1(XiX
T
i − Σ) for

some independent random vectors Xi ∈ Rn such that E[Xi] = 0, E[XiX
T
i ] =

Σ and
∀u ∈ Rn, E[exp(〈Xi, u〉)] 6 exp(K2‖u‖2) .

In this case, for any u ∈ S, the random variable 〈u,Xi〉 are K-sub-Gaussian,
so 〈u,Xi〉2 − uTΣu are (CK2, CK4) sub-Gamma, so

∀u ∈ Rn : ‖u‖2 6 1/CK2, E
[

exp

(〈 n∑
i=1

(XiX
T
i − Σ), uuT

〉
F

)]
6 exp(CnK2) .

To take this situation into account, we assume in the following that our
matrix of interest X satisfies the following assumption: ∀u, v : ‖u‖2∨‖v‖2 6
1 and ∀s : |s| < 1/b,

E[exp(s
〈
X, uvT

〉
F

)] 6 exp(s2K2) . (5.7)
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5.5.2 Global strategy

To bound the random variable of interest, we extend the approach seen for
random vectors. Consider the function

g(U, V ) = s
〈
X, UV T

〉
F
− logEX[exp(s

〈
X, UV T

〉
F

)] ,

assuming always that X, U and V are independent. This function satisfies
EX[exp(g(U, V ))] = 1 and therefore, for any z > 0,

PX(Eµ[exp(g(U, V ))] > exp(z)) 6 exp(−z) .

By the variational formula it follows that, for any z > 0,

PX(sup
ρ4µ

Eρ[g(U, V )]−K(ρ, µ) > z) 6 exp(−z) .

Replacing by the expression of g(U, V ), we get that, with PX-probability
larger than 1− exp(−z), ∀(u, v) ∈ EU × EV ,

sEρu⊗ρ′v [
〈
X, UV T

〉
F

] 6 Eρu⊗ρ′v [logEX[exp(s
〈
X, UV T

〉
F

)]]+K(ρu⊗ρ′v, µ)+z .

Now we have, by independence,

Eρu⊗ρ′v [
〈
X, UV T

〉
F

] =
〈
X,Eρu [U ]Eρ′v [V ]T

〉
F

=
〈
X, uvT

〉
F

,

provided that ρu is centered at u and ρ′v at v.
Furthermore, Assumption (5.7) ensures that, if ρu is supported in the

Euclidean ball B(u, rU ) and ρ′v in B(u, rV ), for any s such that

|s| 6 1

(‖u‖+ rU )(‖v‖+ rV )
,

we have |s|‖U‖‖V ‖ 6 1/b a.s. and thus

logEX[exp(s
〈
X, UV T

〉
F

)] 6 K2s2‖U‖2‖V ‖2 ,

so, by independence

Eρu⊗ρ′v [logEX[exp(s
〈
X, UV T

〉
F

)]] 6 K2s2Eρu [‖U‖2]Eρ′v [‖V ‖
2] .

Finally, assuming µ is of the form µ = µU ⊗ µV , we have

K(ρu ⊗ ρ′v, µ) =

∫
log

(
fρu(x)fρ′v(y)

fµ1(x)fµ2(y)

)
fρu(x)fρ′v(y)d(x, y)

= K(ρu, µ1) +K(ρ′v, µ2) .

To conclude this section, we recall that we have obtained that, for any
ρ = ρu ⊗ ρ′v and any µ = µ1 ⊗ µ2,
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(i) if ρu is centered at u and ρ′v at v,

(ii) if ρu is supported in the Euclidean ball B(u, rU ) and ρ′v in B(u, rV ),

for any s such that

|s| 6 1

(‖u‖+ rU )(‖v‖+ rV )
,

with PX-probability larger than 1− exp(−z), ∀(u, v) ∈ EU × EV ,

s
〈
X, uvT

〉
F
6 K2s2Eρu [‖U‖2]Eρ′v [‖V ‖

2]+K(ρu, µ1)+K(ρ′v, µ2)+z . (5.8)

5.5.3 Priors and quantities of interest

We define for ρu the truncated Gaussian defined for any u ∈ EU , a radius
rU and covariance matrix ΓU/βU with βU to be specified later by the distri-
bution with density

fu(x) =
1

(
√

2π/βU )n
√

det(ΓU )CU
exp

(
−βU

2
(x−u)TΓ−1

U (x−u)

)
1{‖x−u‖26rU} ,

with normalizing constant CU = P(N(0,ΓU/βU ) ∈ B(0, rU )). Hereafter, we
fix rU = 2

√
Tr(ΓU )/βU so 1/2 6 CU 6 1. This distribution is centered at u

and supported in B(u, rU ).
We define µ1 as the Gaussian distribution N(0,ΓU/βU ). We define sim-

ilarly ρ′v as truncated Gaussian distributions and µ2 as the Gaussian distri-
bution N(0,ΓV /βV ).

The computations of Section 5.4.1 show that, with these choices,

Eρu [‖U‖2] 6
Tr(ΓU )

βU
+ ‖ΓU‖ ,

Eρ′v [‖V ‖
2] 6

Tr(ΓV )

βV
+ ‖ΓV ‖ ,

K(ρu, µ1) 6
1

e
+
βU
2
‖t‖2

Γ−1
U

6
βU + 1

2
,

K(ρ′u, µ2) 6
βV + 1

2
.

To conclude this section, we get that, with our choices, for any s such that

|s| 6
[
b

√
Tr(ΓU )

βU
+ ‖ΓU‖

√
Tr(ΓV )

βV
+ ‖ΓV ‖

]−1

,

we have〈
X, uvT

〉
F
6 K2s

(
Tr(ΓU )

βU
+‖ΓU‖

)(
Tr(ΓV )

βV
+‖ΓV ‖

)
+
βU + βV

2s
+

1 + z

s
.
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5.5.4 Optimization

Let α > b and

s =

[
α

√
Tr(ΓU )

βU
+ ‖ΓU‖

√
Tr(ΓV )

βV
+ ‖ΓV ‖

]−1

so

〈
X, uvT

〉
F
6

√(
Tr(ΓU )

βU
+ ‖ΓU‖

)(
Tr(ΓV )

βV
+ ‖ΓV ‖

)(
K2

α
+α

(
βU + βV

2
+1+z

))
.

Let us introduce the following effective ranks

r(ΓU ) =
Tr(ΓU )

‖ΓU‖
, r(ΓV ) =

Tr(ΓV )

‖ΓV ‖
.

so

〈
X, uvT

〉
F
6

√
‖ΓU‖‖ΓV ‖

(
r(ΓU )

βU
+ 1

)(
r(ΓV )

βV
+ 1

)(
K2

α
+α

(
βU + βV

2
+1+z

))
.

Choose βU = r(ΓU ), βV = r(ΓV ) to get

〈
X, uvT

〉
F
6
√
‖ΓU‖‖ΓV ‖

(
2K2

α
+ α

(
r(ΓU ) + r(ΓV ) + 2(1 + z)

))
.

We now distinguish between two situations: Either r(ΓU )+r(ΓV )+2(1+
z) 6 2(K/b)2 or r(ΓU ) + r(ΓV ) + 2(1 + z) > 2(K/b)2.

We first consider the case where r(ΓU ) + r(ΓV ) + 2(1 + z) 6 2(K/b)2, so

b 6

√
2K√

r(ΓU ) + r(ΓV ) + 2(1 + z)
.

We choose thus

α =

√
2K√

r(ΓU ) + r(ΓV ) + 2(1 + z)
> b .

so 〈
X, uvT

〉
F
6 K

√
2‖ΓU‖‖ΓV ‖

√
r(ΓU ) + r(ΓV ) + 2(1 + z) .

We now consider the case where r(ΓU )+r(ΓV )+2(1+z) > 2(K/b)2 and
choose α = b to get

〈
X, uvT

〉
F
6
√
‖ΓU‖‖ΓV ‖

(
2K2

b
+ b

(
r(ΓU ) + r(ΓV ) + 2(1 + z)

))
6 2b

√
‖ΓU‖‖ΓV ‖

(
r(ΓU ) + r(ΓV ) + 2(1 + z)

)
.
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We conclude that, in all cases, we have, if X satisfies the following as-
sumption: ∀u, v : ‖u‖2 ∨ ‖v‖2 6 1 and ∀s : |s| < 1/b,

E[exp(s
〈
X, uvT

〉
F

)] 6 exp(s2K2) , (5.9)

then, for all z > 0, with probability 1− exp(−z),

sup
u∈EU ,v∈EV

uTXv 6
√
‖ΓU‖‖ΓV ‖

(
KC(U, V, z) ∨ bC(U, V, z)2

)
, (5.10)

where r(ΓU ) = Tr(ΓU )/‖ΓU‖, r(ΓV ) = Tr(ΓV )/‖ΓV ‖ and

C(U, V, z) =
√

2(r(ΓU ) + r(ΓV )) + 4(1 + z)

EU = {u ∈ Rn : ‖Γ−1/2
U u‖2 6 1}, EV = {v ∈ Rp : ‖Γ−1/2

V v‖2 6 1} .

5.5.5 Application to quadratic processes

In this section, we are interested in the following problem. Let X1, . . . , Xn

denote i.i.d. random vectors in Rd such that E[XiX
T
i ] = Σ,

∀i ∈ {1, . . . , n}, ∀u ∈ Rd, ‖ 〈u,Xi〉 ‖ψ2 6 ‖u‖2 .

Let ΓU and ΓV denote two non-singular positive semi-definite matrices and
let

EU = {x ∈ Rd : ‖Γ−1/2
U x‖ 6 1}, EV = {x ∈ Rd : ‖Γ−1/2

V x‖ 6 1} .

We are interested in the random variable

Z = sup
u∈EU ,v∈EV

1

n

n∑
i=1

{〈Xi, u〉 〈Xi, v〉 − uTΣv} .

We define the matrix

X =
1

n

n∑
i=1

{XiX
T
i − Σ} ,

so Z = supu∈EU ,v∈EV u
TXv. We have, for any u, v ∈ Rd,

‖ 〈Xi, u〉 〈Xi, v〉 ‖ψ1 6
1

2

(
α‖ 〈Xi, u〉2 ‖ψ1 +

1

α
‖ 〈Xi, v〉2 ‖ψ1

)
=

1

2

(
α‖ 〈Xi, u〉 ‖2ψ2

+
1

α
‖ 〈Xi, v〉 ‖2ψ2

)
6 ‖u‖2‖v‖2 .

It follows that

‖uT (XiX
T
i − Σ)v‖ψ1 6 2‖u‖2‖v‖2 .
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Thus by Theorem 22, there exists an absolute constant C > 0 such that, for
any |s| 6 1/C‖u‖2‖v‖2,

E[exp(suT (XiX
T
i − Σ)v)] 6 exp(C2s2‖u‖22‖v‖22) .

By independence, it follows therefore that, for any |s| 6 1/C‖u‖2‖v‖2,

E[exp(suT (
n∑
i=1

{XiX
T
i − Σ})v)] 6 exp(nC2s2‖u‖22‖v‖22) .

This can be written, for any |s| 6 1/C‖u‖2‖v‖2,

E[exp(nsuTXv)] 6 exp(nC2s2‖u‖22‖v‖22) .

Fix now u and v such that ‖u‖2 ∨‖v‖2 6 1. The following condition implies
that, for any |s| 6 n/C,

E[exp(suTXv)] 6 exp

(
C2s2

n

)
.

In other words, the matrix X satisfies condition (5.7) with b = C/n and
K = C/

√
n. It follows from the previous section that we have therefore, for

all z > 0, with probability 1− exp(−z),

sup
u∈EU ,v∈EV

uTXv 6 C
√
‖ΓU‖‖ΓV ‖

(
C(U, V, z) ∨ C(U, V, z)2

)
,

where

C(U, V, z) =

√
r(ΓU ) + r(ΓV ) + 1 + z

n
,

EU = {u ∈ Rn : ‖Γ−1/2
U u‖2 6 1}, EV = {v ∈ Rp : ‖Γ−1/2

V v‖2 6 1} .
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Chapter 6

Upper bounds on random
processes

In this chapter, we provide various chaining bound used to upper bound
suprema of processes with sub-Gaussian increments. Let {Xt, t ∈ T} denotes
a random process, that is a collection of random variables indexed by a
separable set T . We assume that the process Xt is centered, i.e. that
E[Xt] = 0, and that it has sub-Gaussian increments.

Definition 50. Assume that d is a distance on T . The process {Xt, t ∈ T}
is said to have sub-Gaussian increments with respect to d if there exists K
such that, for any s, t ∈ T ,

‖Xs −Xt‖ψ2 6 Kd(s, t) .

Remark 51. The standard Gaussian process has sub-Gaussian increments
with respect to the Euclidean distance on Rp. This distance will play a
particularly important role in this chapter.

The purpose of this chapter is to give the main known methods to obtain
upper bounds on the following extension of the Gaussian width of T :

E[sup
t∈T

Xt] .

To avoid measurability issues, we focus on cases where T is separable so

E[sup
t∈T

Xt] = sup
T0⊂T,|T0|<∞

E[sup
t∈T0

Xt] ,

and therefore, without loss of generality, we only consider cases where T
is finite. We derive these bounds from chaining arguments. We start with
Dudley’s argument, which is a multi-scale refinement of the ε-net argument
we have seen to obtain upper bounds on linear processes over the Euclidean
ball. We show a nice application of Dudley’s bound to suprema of boolean

79
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functions where it can be used to bound the expected supremum using Vap-
nik Chervonenkis dimension of sets of Boolean functions. We conclude the
chapter with the generic chaining bound to prove deviation inequalities for
suprema of random processes with sub-Gaussian increments and discuss
some applications to statistical learning theory and bounds on quadratic
processes.

6.1 Dudley’s inequality

Dudley’s inequality is a multi-scale refinement of the ε-net argument. This
argument involves the notion of covering number of a metric set T .

Definition 52. Assume that T is precompact. The covering number N (T, d, ε)
is the smallest number of balls of radius ε necessary to cover T .

The ε-net argument can be used to bound for example to bound the
linear process Xt = 〈X, t〉 over the unit Euclidean ball T = B2. It is based
on the decomposition

Xt = (Xt −Xπ(t)) +Xπ(t) ,

valid for any t ∈ T , where π(t) is a point in an ε-net Nε of T such that
d(t, π(t)) 6 ε. Using this decomposition, we obtained that, for any ε ∈ (0, 1),

sup
t∈T

Xt 6 max
t∈Nε

Xt + ε sup
t∈T

Xt , (6.1)

so

sup
t∈T

Xt 6
1

1− ε
max
t∈Nε

Xt .

In particular, if Xt has sub-Gaussian increments, we deduce that, for any
z > 0 and any t0 ∈ T ,

P(sup
t∈T

Xt −Xt0 > z) 6 P(max
t∈Nε

Xt −Xt0 > (1− ε)t)

6 |N (T, d, ε)| exp

(
− (1− ε)2z2

K2 maxt∈T d(t0, t)2

)
.

Rearranging the terms and integrating gives

E[sup
t∈T

Xt] .
Kdiam(T )

1− ε
√

log(|N (T, d, ε)|) ,

where diam(T ) = supt∈T d(t, t0). Dudley’s inequality extends this bound
to processes that do not necessarily satisfy a key inequality like (6.1) and
possibly refines it by considering the decomposition of T at all scales ε > 0.
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Theorem 53 (Dudley’s inequality). Let {Xt, t ∈ T} denote a centered pro-
cess with sub-Gaussian increments, then

E[sup
t∈T
|Xt|] 6 CK

∑
k∈Z

2−k
√

logN (T, d, 2−k)

6 CK

∫ +∞

0

√
logN (T, d, ε)dε .

Remark 54. The second result follows from the first one and the com-
parison between series and integral that holds by monotonicity of the map
ε 7→ N (T, d, ε).

Remark 55. Dudley’s inequality gives a result in expectation. It is interest-
ing, as an exercise, to adapt slightly the proof to show the following version
of the result: for any z > 0,

P
(

sup
s,t∈T

|Xt−Xs| > CK

(∫ +∞

0

√
logN (T, d, ε)dε+diam(T )z

))
6 exp(−z2) ,

where diam(T ) = sups,t∈T d(s, t).

Proof. We prove the first bound. Let k1 and k0 be respectively the smallest
k such that N (T, d, 2−k) = |T | and the largest k such that N (T, d, 2−k) = 1.
Let t0 ∈ T such that B(t0, 2

−k0) ⊃ T . For any k ∈ {k0, . . . , k1}, let Tk denote
a set with cardinality N (T, d, 2−k) such that ∪u∈TkB(u, 2−k) ⊃ T . For any
t ∈ T and k ∈ {k0, . . . , k1}, let πk(t) ∈ Tk such that d(t, πk(t)) 6 2−k. In
particular, Xπk1 (t) = t.

As E[Xt0 ] = 0, we have

E[sup
t∈T

Xt] = E[sup
t∈T

(Xt −Xt0)] .

The “chaining argument” is to write the difference Xt −Xt0 as a chain

Xt −Xt0 =

k1−1∑
k=k0

Xπk+1(t) −Xπk(t) .

Using this decomposition, we obtain

sup
t∈T

(Xt −Xt0) 6
k1−1∑
k=k0

sup
t∈T

(Xπk+1(t) −Xπk(t)) . (6.2)

Now, there is at most N (T, d, 2−k)N (T, d, 2−(k+1)) 6 N (T, d, 2−(k+1))2 ran-
dom variables (Xπk+1(t)−Xπk(t)) when t describes T and all these variables
satisfy

‖Xπk+1(t)−Xπk(t)‖ψ2 6 ‖Xπk+1(t)−Xt‖ψ2 +‖Xt−Xπk(t)‖ψ2 6 CK2−(k+1) .
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Using a union bound, it follows therefore that, with probability at least
1− 2 exp(−u),

sup
t∈T

(Xπk+1(t) −Xπk(t)) 6 CK2−(k+1)
√

log(N (T, d, 2−(k+1))) + u .

Integrating this upper bound shows that

E
[

sup
t∈T

(Xπk+1(t) −Xπk(t))

]
6 CK2−(k+1)

√
log(N (T, d, 2−(k+1))) .

It follows therefore from (6.2) that

E
[

sup
t∈T

(Xt −Xt0)

]
6 CK

k1−1∑
k=k0

2−(k+1)
√

logN (T, d, 2−(k+1)) .

6 CK
∑
k∈Z

2−(k+1)
√

logN (T, d, 2−(k+1)) .

We conclude by saying that (i), E
[

supt∈T (Xt −Xt0)
]

= E
[

supt∈T Xt

]
and

(ii) that the same argument can can be used to bound E
[

supt∈T |Xt|
]

=
E
[

supt∈T max{Xt,−Xt}
]
.

6.2 VC dimension

In this section, we apply Dudley’s inequality to processes indexed by Boolean
functions and link Dudley’s integral with the perhaps more familiar notion
of Vapnik Chervonenkis complexity for these classes of functions. Let thus
F denote a class of Boolean functions f : Ω → {0, 1} and, for the sake of
completeness, recall the definition of VC dimension of F .

Definition 56. A set Λ ⊂ Ω is said shattered by F if any boolean function
f : Λ→ {0, 1} can be obtained as a restriction of some g ∈ F .

The VC-dimension of F is the largest cardinality of a set Λ ⊂ Ω shattered
by F .

6.2.1 Examples

Let us recall here the classical example of Half spaces encoded in the set of
Boolean functions

F = {x ∈ Rp 7→ 1{〈u,x〉>0}, u ∈ Sp} .

We will show that

VC(F) = p .
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To prove this result, we show first that there exists a set of p vectors in Rp
that is shattered by F . Let e1, . . . , ep denote the canonical basis of Rp and
let f : {e1, . . . , ep} → {0, 1}. We consider the vector

u =
1
√
p

p∑
i=1

(2f(ei)− 1)ei ∈ Sp .

Then, 〈u, ei〉 = (2f(ei) − 1)/
√
p > 0 iff f(ei) = 1, therefore, for any i ∈

{1, . . . , p}, f(ei) = 1{〈u,ei〉>0}, so f is the restriction of x 7→ 1{〈u,x〉>0} on
Λ = {e1, . . . , ep}. This set is shattered by F , so VC(F) > p.

Next, we have to show that any set of p + 1 vectors in Rp cannot be
shattered by F . Let u1, . . . , up+1 denote p+ 1 vectors in Rp. The family is
linearly dependent, so w.l.o.g., we can assume that

up+1 =

p∑
i=1

βiui .

In this case, we define the boolean function

f(ui) = 1{βi60}, ∀i ∈ {1, . . . , p}, f(up+1) = 1 .

If u1, . . . , up+1 was shattered by F , there would exist x ∈ Rp such that f
is the restriction of u 7→ 1{〈u,x〉>0} to u1, . . . , up+1. In particular, for any
i ∈ {1, . . . , p}, 〈ui, x〉 > 0 iff βi 6 0, so

∀i ∈ {1, . . . , p}, βi 〈x, ui〉 6 0 ,

and therefore

〈up+1, x〉 =

p∑
i=1

βi 〈ui, x〉 6 0 .

On the other hand, as f is the restriction of u 7→ 1{〈u,x〉>0} and f(up+1) = 1,
we should have

〈up+1, x〉 > 0 .

This is absurd, so u1, . . . , up+1 cannot be shattered by F . As this is true for
any set of p+ 1 vectors, we can conclude that VC(F) 6 p.

6.2.2 Pajor’s lemma

As F shatters a set Λ ⊂ Ω with cardinality VC(F), it follows that |F| >
2VC(F).

Pajor’s Lemma provides an upper bound on |F| using the number of sets
shattered by F when Ω is finite.

Lemma 57 (Pajor’s Lemma). Let F denote a set of Boolean functions
defined on a finite set Ω. Then,

|F| 6 |{Λ ⊂ Ω : Λ is shattered by F}| .
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Proof. We proceed by induction on the cardinality of Ω. As the result is
trivial when |Ω| = 0 (the empty set is always shattered by F), we can assume
that Pajor’s Lemma is true for any set of cardinality n and consider a set Ω
with cardinality n+ 1. Let x0 ∈ Ω and define

F0 = {f ∈ F : f(x0) = 0}, F1 = {f ∈ F : f(x0) = 1} .

Then, we obviously have |F| = |F0|+ |F1|.
Let S = {Λ ⊂ Ω : Λ is shattered by F}. By our induction hypothesis,

for any i ∈ {0, 1},

|Fi| 6 |Si|, where Si = {Λ ⊂ Ω \ {x0} : Λ is shattered by Fi} .

We have S0 ∪ S1 ⊂ S and

1∑
i=0

|Si| = |S0 ∪ S1|+ |S0 ∩ S1| .

We build now two injections, one from S0 ∪ S1 to S and the other one
from S0 ∩ S1 to S, with disjoint images, from which we can conclude that
|S0 ∪S1|+ |S0 ∩S1| 6 |S|. We call ϕ∪ the first injection and ϕ∩ the second.

1. If Λ ∈ S0 \ S1 or Λ ∈ S1 \ S0, let ϕ∪(Λ) = Λ.

2. If Λ ∈ S0 ∩S1, for any g : Λ→ {0, 1}, there exists f0 ∈ S0 and f1 ∈ S1

such that g is the restriction of both f0 and f1. It follows that both
Λ and Λ ∪ {x0} belong to S. We define therefore ϕ∪(Λ) = Λ and
ϕ∩(Λ) = Λ ∪ {x0}.

As anticipated, we conclude therefore that

|S| > |S0 ∪ S1|+ |S0 ∩ S1| = |S0|+ |S1| > |F0|+ |F1| = |F| .

We conclude this section with Sauer-Shelah Lemma, that gives a bound
on the growth of cardinality of sets of Boolean functions on finite sets with
fixed VC dimensions.

Lemma 58 (Sauer-Shelah Lemma). Let F denote a set of Boolean functions
on an n-points set Ω, with VC(F) = d. Then

|F| 6
d∑

k=0

(
n

k

)
6

(
en

d

)d
.
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Proof. By Pajor’s Lemma

|F| 6 |{Λ ⊂ Ω : Λ is shattered by F}|

=

n∑
k=0

|{Λ ⊂ Ω : Λ is shattered by F and |Λ| = k}| .

Now by definition of definition of VC dimension, the cardinalities in the last
bound are null for any k > d. Hence,

|F| =
d∑

k=0

|{Λ ⊂ Ω : Λ is shattered by F and |Λ| = k}|

6
d∑

k=0

|{Λ ⊂ Ω : |Λ| = k}|

=
d∑

k=0

(
n

k

)
.

For the second inequality, as d/n 6 1, we have

d∑
k=0

(
n

k

)(
d

n

)d
6

d∑
k=0

(
n

k

)(
d

n

)k
6

n∑
k=0

(
n

k

)(
d

n

)k
=

(
1 +

d

n

)n
6 ed .

6.3 Covering numbers and VC dimension

In this section, we prove an upper bound on covering numbers of sets of
Boolean functions using the VC dimension of this set. We apply this bound
to derive a classical bound for ERM in classification.

6.3.1 Bounding covering numbers by VC dimension

The covering numbers of sets of Boolean functions can be bounded using
the VC dimension as shown by the following result.

Theorem 59 (Covering via VC dimension). Let F be a class of Boolean
functions on a probability space Ω, µ with VC dimension d. Then, for every
ε ∈ (0, 1),

N (F , L2(µ), ε) 6

(
2

ε

)Cd
.

The strength of this result is that it holds for any probability measure µ.
The proof will be based on the following lemma.



86 CHAPTER 6. UPPER BOUNDS ON RANDOM PROCESSES

Lemma 60 (Dimension reduction lemma). Let F denote a set of N Boolean
functions on a probability space (Ω, µ). Assume that, for any f, g ∈ F ,
‖f − g‖L2(µ) > ε. Then, there exist n points {x1, . . . , xn} in Ω such that

∀f 6= g ∈ F , 1

n

n∑
i=1

(f − g)2(xi) > (ε/2)2, n 6 Cε−4 logN .

Proof of the dimension reduction lemma. LetX,X1, . . . , Xn denote i.i.d. ran-
dom variables with common distribution P. Fix f 6= g in F and let h =
(f − g)2. We have

‖h(X)− E[h(X)]‖ψ2 6 C‖h(X)‖ψ2 6 C‖h‖∞ 6 C .

By Theorem 9, it follows that

‖
n∑
i=1

(h(Xi)− E[h(X)])‖ψ2 6 C
√
n ,

thus

P
(∣∣∣∣ 1n

n∑
i=1

(h(Xi)− E[h(X)])

∣∣∣∣ > ε2

4

)
6 exp(−Cnε4) .

By a union bound, it follows therefore that

P
(
∃f 6= g ∈ F :

∣∣∣∣ 1n
n∑
i=1

((f−g)2(Xi)−‖f−g‖2L2(µ))

∣∣∣∣ > ε2

4

)
6 N2 exp(−Cnε4) .

If n = Cε−4 logN for a large enough constant C, it follows therefore that

P
(
∃f 6= g ∈ F :

∣∣∣∣ 1n
n∑
i=1

((f − g)2(Xi)− ‖f − g‖2L2(µ))

∣∣∣∣ > ε2

4

)
< 1 .

In other words, there exists at least a configuration of the Xi such that, for
any f 6= g in F ,

1

n

n∑
i=1

((f − g)2(Xi) > ‖f − g‖2L2(µ) −
ε2

4
>

3ε2

4
.

We can now turn to the proof of the covering via VC dimension’s theorem.

Proof of the covering via VC dimension’s theorem. Let ε > 0 and Fε denote
an ε-separated set in F with maximal cardinality. Then, Fε is an ε-net of
F (otherwise, Fε would not have maximal size), therefore N = |Fε| >
|N (F , L2, ε)|.
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The dimension reduction lemma applied to Fε shows that there exist
n = Cε−4 logN points {x1, . . . , xn} and n distinct Boolean functions in Fε
obtained as restrictions of functions in F . By Sauer-Shellah lemma applied
to Fε and Ω = {x1, . . . , xn}, we get, with dε = VC(Fε),

N 6

(
en

dε

)dε
6

(
Cε−4 logN

dε

)dε
6
(
2Cε−4

)dε√N .

To get the last inequality, we used that

logN

2dε
= log(N1/2dε) 6 N1/2dε .

We finally get, as dε 6 d,

|N (F , L2, ε)| 6 N 6

(
2Cε−4

)2dε

6 2Cdε−8d .

Let us now consider processes (Xf )f∈F indexed by a separable set F
of Boolean functions. If this process has sub-Gaussian increments, we can
bound E[supf∈F Xf ] using Dudley’s integral. Then, we can use the upper
bound on the covering numbers by VC dimension to bound Dudley’s integral
using VC dimension. The precise result is gathered in the following theorem.

Theorem 61. Let F denote a set of Boolean functions and (Xf )f∈F denote
a random process indexed by F such that, for any f and g in F ,

‖Xf −Xg‖ψ2 6 K‖f − g‖L2(µ) ,

for some measure µ. Then

E[sup
f∈F

Xf ] 6 CK
√

VC(F) .

Proof. By Dudley’s integral bound, we have

E[sup
f∈F

Xf ] 6 CK

∫ +∞

0

√
log(N (F , L2(µ), ε)dε .

Thus by the covering via VC dimension theorem,

E[sup
f∈F

Xf ] 6 CK
√

VC(F)

∫ 1

0

√
log(1/ε)dε .
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6.3.2 Application to ERM for classification

In this section, we consider binary classification where we observe i.i.d. cou-
ples (xi, yi) ∈ F × {0, 1}, i ∈ {1, . . . , n} and, given a set F of classifiers
f : X → {0, 1}, we are interested in the ERM

f̂ ∈ argminf∈F Pn`f , `f (x, y) = I{y 6= f(x)} .

A very rough analyse of this estimator yields, for f∗ ∈ argminf∈F P`f ,

P (`f̂ − `f∗) 6 (P − Pn)(`f̂ − `f∗) 6 sup
f∈F

(P − Pn)(`f − `f∗) .

The random variables `f (xi, yi) − `f∗(xi, yi) being independent and taking
values in [−1, 1], the bounded difference inequality shows that, with proba-
bility 1− δ,

sup
f∈F

(P − Pn)(`f − `f∗) 6 E[sup
f∈F

(P − Pn)(`f − `f∗)] + C

√
log(1/δ)

n
.

To bound this expectation, we use the symmetrization trick.

Lemma 62 (Symmetrization). Let Z1, . . . , Zn ∈ Rp denote i.i.d. random
vectors. Then, if ε1, . . . , εp are i.i.d. Rademacher random variables, inde-
pendent from Z1, . . . , Zn,

E[‖ 1

n

n∑
i=1

Zi − E[Zi]‖∞] 6 2E[‖ 1

n

n∑
i=1

εiZi‖∞] .

Proof of the symmetrization lemma. Let Z ′1, . . . , Z
′
n denote independent copies

of Z1, . . . , Zn so E[Zi] = E[Z ′i|Z1, . . . , Zn]. We have

E[‖ 1

n

n∑
i=1

Zi − E[Zi]‖∞] 6 E
[
‖ 1

n

n∑
i=1

[Zi − Z ′i]‖∞
]
.

Now the vector
∑n

i=1[Zi − Z ′i] has the same distribution as
∑n

i=1 εi[Zi −
Z ′i] as shown by a straightforward computation of their Fourier transform.
Therefore,

E[‖ 1

n

n∑
i=1

Zi − E[Zi]‖∞] 6 E
[
‖ 1

n

n∑
i=1

εi[Zi − Z ′i]‖∞
]
6 2E[‖ 1

n

n∑
i=1

εiZi‖∞] .

We can assume as usual that F is finite. By the symmetrization lemma,

E[sup
f∈F

(P−Pn)(`f−`f∗)] = E[sup
f∈F

(P−Pn)`f ] 6 2E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi`f (xi, yi)

∣∣∣∣] .
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Now conditioning on Dn = {(x1, y1), . . . , (xn, yn)} and let, for any f ∈ F ,
let Zf = n−1

∑n
i=1 εi`f (xi, yi), we have, by Theorem 9,

‖Zf − Zg‖ψ2 6
C

n

√√√√ n∑
i=1

(`f − `g)2(xi) =
C√
n
‖f − g‖L2(µn) ,

where µn is the uniform distribution on x1, . . . , xn. By Theorem 61, there-
fore,

E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi`f (xi, yi))

∣∣∣∣|Dn] .
√

VC(F)

n
.

Integrating with respect to the distribution of Dn yields finally the risk
bound for ERM in classification: If F is a set of classifiers with finite VC
dimension and f̂ ∈ argminf∈F Pn`f is the ERM for the 0 − 1 loss, for any
δ ∈ (0, 1), with probability 1− δ,

P (`f̂ − `f∗) .
√

VC(F)

n
+

√
log(1/δ)

n
.

6.4 Generic chaining bound

Definition 63. Let (T, d) denote a metric space. A sequence (Tk)k>0 of

finite subsets of T is called admissible if |Tk| 6 22k .

The γ2 functional of T is defined as

γ2(T, d) = inf
Tk

sup
t∈T

+∞∑
k=0

2k/2d(t, Tk) ,

where the infimum is taken over all admissible sequences Tk.

Talagrand’s generic chaining theorem shows that the supremum of a
random process over a set T with sub-Gaussian increments does not deviate
much from the γ2 functional of T .

Theorem 64 (Talagrand’s deviation inequality). Let (Xt)t∈T denote a cen-
tered random process with sub-Gaussian increments with respect to a distance
d on T :

‖Xt −Xs‖ψ2 6 Kd(s, t), ∀s, t ∈ T .

Let ∆(T ) = sups,t∈T d(s, t) and t0 ∈ T . Then, for any u > 0, with probability
at least 1− 2 exp(−u2),

sup
t∈T

(Xt −Xt0) 6 CK(γ2(T, d) + u∆(T )) .
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Proof. The proof relies on refinements of Dudley’s chaining inequality. First,
we can assume that K = 1 and T is finite, without loss of generality. Then,
we consider an admissible sequence (Tk)k>0, with T0 = {t0}, and denote, for
any k > 0 and t ∈ T , by πk(t) ∈ Tk a point such that d(t, πk(t)) = d(t, Tk) :=
infu∈Tk d(t, u).

We first fix t ∈ T and build an increasing sequence ki such that k0 =
0 and, for any i > 1, ki+1 is the first moment such that d(t, πki+1

(t)) 6
d(t, πki(t))/2. Then we write as in the proof of Dudley’s bound

Xt −Xt0 =

I∑
i=0

Xπki+1
(t) −Xπki (t)

.

For any fixed i and t, we have, with probability 1− 2 exp(−C(2ki+1 + u2)),

|Xπki+1
(t) −Xπki (t)

| 6 Cd(πki+1
(t), πki(t))(u+ 2ki+1/2) .

Taking a union bound over all t ∈ T shows that the same holds for any t ∈ T
with probability

1−2|T ki ||T ki+1 | exp(−C(2ki+1 +u2)) > 1−22ki+1+1+1 exp(−C(2ki+1 +u2)) .

Finally, a union bound over i shows that the same holds for any i and t with
probability

1− C
+∞∑
k=0

22k exp(−C(2k + u2)) > 1− C exp(−Cu2) .

It follows that, with probability 1− C exp(−Cu2),

|Xt −Xt0 | 6
I∑
i=0

|Xπki+1
(t) −Xπki (t)

|

6
I∑
i=0

Cd(πki+1
(t), πki(t))(u+ 2ki+1/2)

6 C

(
d(t, t0)u+

I∑
i=0

2ki+1/2d(t, πki(t))

)

6 C

(
∆(T )u+

I∑
i=0

2ki+1/2d(t, πki(t))

)
.

To conclude, it remains to show that

2ki+1/2d(t, πki(t)) 6 C

ki+1−1∑
k=ki

2k/2d(t, Tk) .
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We have, for any k 6 ki+1 − 1, d(t, Tk) > d(t, Tki)/2, so

ki+1−1∑
k=ki

2k/2d(t, Tk) >
d(t, Tki)

2

2ki+1/2 − 2ki/2√
2− 1

>
2ki+1/2d(t, Tki)

2
√

2
.

This concludes the proof of Talagrand’s inequality.

The strength of Talagrand’s inequality can be appreciated thanks to
Talagrand’s majorizing measure theorem, which shows that the γ2 functional
is of the order of the Gaussian width of T .

Theorem 65 (Talagrand’s majorizing measure theorem). Let (Xt)t∈T de-
note a centered Gaussian process and let d(s, t) = ‖Xs −Xt‖2. Then,

cγ2(T, d) 6 E[sup
t∈T

Xt] 6 Cγ2(T, d) .

This theorem is proved in Chapter 7. We refer the interested reader
to it for the details. The majorizing measure theorem directly implies the
following reformulation of Talagrand’s inequality.

Theorem 66 (Talagrand’s deviation inequality in Rp). Let (Xt)t∈T denote
a centered random process with sub-Gaussian increments with respect to the
Euclidean distance on T ⊂ Rp:

‖Xt −Xs‖ψ2 6 K‖s− t‖2, ∀s, t ∈ T .

Let ∆(T ) = sups,t∈T ‖s − t‖2 and t0 ∈ T . Then, for any u > 0, with
probability at least 1− 2 exp(−u2),

sup
t∈T

(Xt −Xt0) 6 CK(w(T ) + u∆(T )) .

6.5 Application to linear SVM estimators

Consider the binary classification setting where we observe i.i.d. couples
(xi, yi), i ∈ {1, . . . , n}, with x ∼ N(0, I) is a Gaussian vector in Rd, and
y ∈ {−1, 1}. The linear SVM estimator is defined as

θ̂λ ∈ argminθ∈Rd Pnϕ(−y 〈θ, x〉) + λ‖θ‖22, ϕ(z) = max(0, 1 + z) .

Following the agenda of the first lecture, the analysis of this estimator can
be reduced to the one of the supremum of the empirical process

sup
θ∈E

(Pn − P )(`θ∗ − `θ) ,

where E is the ellipsoid E = {θ ∈ Rd : ‖θ − θ∗‖2S 6 1}, for some positive
symmetric matrix S. In this section, we show Talagrand’s theorem can be
used to bound from above this process.
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Step 1: We first prove that the process

Xθ = (Pn − P )(`θ∗ − `θ) ,

has sub-Gaussian increments. We have

Xθ −Xθ′ = (Pn − P )(`θ′ − `θ) .

For any s ∈ R, as ϕ is 1-Lipschitz,

exp(s2(`θ′(x, y)− `θ(x, y))2) 6 exp(s2
〈
θ′ − θ, x

〉2
) .

As 〈u, x〉 ∼ N(0, 1), with u = (θ′− θ)/‖θ− θ′‖2, we have, for any s for which
it makes sense

E[exp(s2
〈
θ′ − θ,X

〉2
)] =

1

1− 2s2‖θ − θ′‖22
.

It follows that

‖`θ′(x, y)− `θ(x, y)‖ψ2 6 2‖θ − θ′‖2 .

Therefore, by centering,

‖`θ′(x, y)− `θ(x, y)− P (`θ′ − `θ)‖ψ2 6 C‖θ − θ′‖2 .

By general Hoeffding’s inequality, it follows that

‖Xθ −Xθ′‖ψ2 6
C√
n
‖θ − θ′‖2 . (6.3)

Step 2: The second step is to apply Talagrand’s deviation inequality in Rd,
we deduce that, for any z > 0, with probability larger than 1− 2 exp(−z2),

sup
θ∈E

Xθ −Xθ∗ 6
C√
n

(w(E) + z∆(E)) .

Step 3: The last step is to evaluate the geometric quantities appearing in
the previous bound. Let S =

∑d
i=1 λiuiu

T
i denote the eigenvalue decomposi-

tion of S, with λ1 > . . . > λd. By definition E is the set of vectors θ = θ∗+u,
where

d∑
i=1

λi 〈u, ui〉2 6 1 .

Thus, for any u ∈ E ,

‖u‖22 =
n∑
i=1

〈u, ui〉2 6
1

λd
= ‖S−1‖ .
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Hence, ∆(E) 6
√
‖S−1‖. Regarding the Gaussian width, let X denote a

standard Gaussian vector in Rd, we have, for any u =
∑d

i=1 〈u, ui〉ui ∈ E ,

〈u,X〉 6
d∑
i=1

√
λi 〈u, ui〉

〈ui, X〉√
λi

6

√√√√ d∑
i=1

〈ui, X〉2

λi
Cauchy-Schwarz ,

so, by Cauchy-Schwarz inequality,

w(E) 6

√√√√ d∑
i=1

E[〈ui, X〉2]

λi
=

√
Tr(S−1) .

Conclusion: The conclusion of this paragraph is that, for any z > 0,

P
(

sup
θ∈E

(Pn − P )(`θ∗ − `θ) > C

√
Tr(S−1) + z

√
‖S−1‖

√
n

)
6 2 exp(−z2) .
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Chapter 7

Gaussian Processes

7.1 Setting

In this chapter, we provide tools to bound Gaussian processes. Hereafter,
(Xt)t∈T denote a Gaussian process, that is, a collection of random variables
indexed by T such that

∀t1, . . . , tk ∈ T, ∀a1, . . . , ak,

k∑
i=1

aiXti is a Gaussian random variable .

Without loss of generality, we also assume that E[Xt] = 0 for all t ∈ T .
The distribution of the Gaussian vectors (Xti)i∈{1,...,k} is characterized

by the covariance matrix Σ = (Cov(Xti , Xtj ))16i,j6k, thus the distribution
of the Gaussian process is entirely characterized by the covariance function
Σ = (Σs,t)s,t∈T , where

Σs,t = Cov(Xs, Xt) = E[XsXt] .

Similarly, the distribution is characterized by the values

∀s, t ∈ T, Σt,t = E[X2
t ], d(s, t) =

√
E[(Xs −Xt)2] .

7.2 Examples

7.2.1 Canonical Gaussian process on Rn

Let g denote a standard Gaussian vector on Rn. The canonical Gaussian
process on Rn is then defined by

∀t ∈ Rn, Xt = 〈g, t〉 .

One can easily check that this is a Gaussian process on Rn, and that it is
the one such that

Σs,t = 〈s, t〉 , d(s, t) = ‖s− t‖2 .

95
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If G ∼ N(0,Σ) is a Gaussian vector on Rn, its covariance matrix Σ is
symmetric positive, so it can be written

Σ =

n∑
i=1

λiuiu
T
i ,

where ui is an orthonormal basis of Rn. The matrix A =
∑n

i=1

√
λiuiu

T
i

satisfies A = AT , ATA = Σ, so its columns t1, . . . , tn satisfy 〈ti, tj〉 = Σi,j .
Hence, the Gaussian vector (Xti)i=1,...,n, where Xti = 〈g, ti〉 satisfies

E[Xti ] = 0, E[XtiXtj ] = 〈ti, tj〉 = Σi,j ,

so (Xti)i=1,...,n is distributed as G.

7.2.2 Canonical Gaussian vector on Hilbert spaces

Let `2 denote the set of sequences of real numbers t = (tn)n>1 such that∑
n>1 t

2
n < ∞, endowed with the inner product 〈s, t〉`2 =

∑
n>1 siti. Let

(gn)n>1 denote a sequence of independent Gaussian random variables. The
canonical Gaussian process on `2 is defined by

Xt =
∑
n>1

tigi .

It is easy to check that it is the Gaussian process on `2 such that

Σs,t = 〈s, t〉`2 , d(s, t) = ‖s− t‖`2 .

7.3 Bounding suprema

We are concerned in this chapter in

E[sup
t∈T

Xt] .

To avoid measurability issues, we assume that T is finite, so supt∈T Xt =
maxt∈T Xt. Without loss of generality, we can furthermore assume that Xt is
a particular instance of the standard Gaussian process on R|T |, Xt = 〈g, γt〉,
where γt are chosen such that Σs,t = 〈γs, γt〉.

Hereafter, we are therefore focusing on bounding the Gaussian width of
finite subsets Γ ∈ Rn

w(Γ) = E[sup
γ∈Γ
〈g, γ〉] .

It is easy to check that w(Γ) = w(Γ − γ0) for any γ0 ∈ Rn, so we
can assume that 0 ∈ Γ without loss of generality and as a consequence
supγ∈Γ 〈g, γ〉 is a non-negative random variable, so

w(Γ) =

∫ +∞

0
P
(

sup
γ∈Γ
〈g, γ〉 > z

)
dz .
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A first idea would be to use a union bound to write

P
(

sup
γ∈Γ
〈g, γ〉 > z

)
6
∑
γ∈Γ

P(〈g, γ〉 > z) .

Then we can use the estimate

P(〈g, γ〉 > z) 6 exp(−z2/2‖γ‖2) .

This yields the bound

P
(

sup
γ∈Γ
〈g, γ〉 > z

)
6
∑
γ∈Γ

exp(−z2/2‖γ‖2) .

This bound can be made smaller than any δ ∈ (0, 1) if we choose

z > 2 max
γ∈Γ
{‖γ‖}

√
log(|Γ|) + log(δ−1) .

This bound cannot be improved without further assumptions on Γ. Indeed,
if Γ is an orthonormal basis of Rn, it yields

P
(

max
i=1,...,n

gi > 2
√

log n+ log 1/δ

)
6 δ , (7.1)

where gi are independent Gaussian random variables, which the correct order
of magnitude given by the Gaussian concentration inequality.

On the other hand, if ei is the canonical basis of Rn, ε ∈ (0, 1/2) is a
small number, and γi = e1 + εei, we have

sup
γ∈Γ
〈g, γ〉 = 〈g, e1〉+ ε max

i=1,...,n
〈g, ei〉 . (7.2)

Each γi has norm 6 3/2, so our generic upper bound gives then

P
(

sup
γ∈Γ
〈g, γ〉 > 3

√
log n+ log 1/δ

)
6 δ .

Integrating this bound then yields

w(γ) 6 3
√

log n+ C .

On the other hand, taking advantage of our decomposition (7.2), we see
that

P
(

sup
γ∈Γ
〈g, γ〉 > z + α

)
6 P(〈g, e1〉 > z) + P(ε max

i=1,...,n
〈g, ei〉 > α) .

Now, for the first term to be smaller than δ/2, we pick z = 2
√

log 2/δ by the
standard estimate of the tails of Gaussian random variable, and, by (7.1),
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the second term does not exceed δ/2 if α = 2ε
√

log n+ log 2/δ. Putting
together these informations yields

P
(

sup
γ∈Γ
〈g, γ〉 > 2

√
log 2/δ + 2ε

√
log n+ log 2/δ

)
6 δ ,

Integrating this new bound then yields

w(Γ) 6 2ε
√

log n+ C .

If ε < 1/
√

log n, this new bound shows that w(Γ) is bounded indepen-
dently of the size of n of Γ while our upper bound derived from a rough
shows that w(Γ) grows with the size n of Γ, so it’s not tight in situations as
the second case, where the random variables 〈g, γ〉 are highly correlated. The
generic chaining bound, that we develop in the following, intends to provide
a generic bound on w(Γ) that scales correctly with n in each situation.

7.4 The generic chaining bound

At a very general level, the idea of generic chaining is to cluster points at
several scales and take union bounds over each cluster.

7.4.1 Hierarchical clustering

Recall that 0 ∈ Γ and let Γ0 = {0}. Then, consider a growing sequence
Γ0 ⊂ Γ1 ⊂ . . . ⊂ Γk = Γ. For any n ∈ {0, . . . , k} and any γ ∈ Γ, we let
πn(γ) ∈ Γn denote any point such that d(γ,Γn) = d(γ, πn(γ)).

We have clearly, for any γ ∈ Γ, π0(γ) = 0, πk(γ) = γ. Therefore, the
following chaining equality holds, which is at the heart of the generic
chaining bound:

〈g, γ〉 =
k∑

n=1

〈g, (πn(γ)− πn−1(γ)〉

This shows that, whatever the sequence zn,

P
(

sup
γ∈Γ
〈g, γ〉 >

k∑
n=1

zn

)
6

k∑
n=1

|Γn||Γn+1|P
(
〈g, (πn(γ)− πn−1(γ)〉 > zn

)
.

7.4.2 How do we choose Γn?

To understand this choice, recall that we have, by the standard estimate on
the tails of a Gaussian random variable:

∀z > 0, P(〈g, (πn(γ)− πn−1(γ)〉 > z) 6 exp

(
− z2

2‖πn(γ)− πn−1(γ)‖22

)
.
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Plugging this estimate in our bound yields

P
(
∃γ ∈ Γ, 〈g, γ〉 >

k∑
n=1

zn(γ)

)
6

k∑
n=1

|Γn||Γn−1| exp

(
− inf
γ∈Γ

z2
n(γ)

2‖πn(γ)− πn−1(γ)‖22

)
.

Now we bound, as the sequence Γn is growing:

|Γn||Γn−1| 6 |Γn|2, ‖πn(γ)− πn−1(γ)‖22 6 4d(γ,Γn−1)2 .

Now, for any sequence βn such that
∑k

n=1 βn = 1, we take zn(γ) = 8d(γ,Γn−1)
√

log(|Γn|2/βn) + z
We derive that, for any growing sequence Γn,

P
(

sup
γ∈Γ
〈g, γ〉 > sup

γ∈Γ

k∑
n=1

8d(γ,Γn−1)
√

log(|Γn|2/βn) + z

)
6 exp(−z) .

Now, we take Γn any sequence such that |Γn| = 22`n , where `n is chosen
such that d(Γ,Γn) = d(Γ,Γn−1)/2 and let Γ′` denote a sequence such that
Γ′`n = Γn. We also let βn = C/|Γn|, we have

k∑
n=1

d(γ,Γn−1)
√

log(|Γn|2/βn) + z 6 C

( `k∑
`=1

d(γ,Γ′`)2
`/2 + sup

γ∈Γ
d(γ, {0})

√
z

)
.

This last bound suggests to introduce the following quantities:

γ2(Γ) = inf
Γ′n:|Γ′n|=22n

sup
γ∈Γ

+∞∑
`=0

d(γ,Γ′`)2
`/2, ∆(Γ) = sup

γ∈Γ
d(γ, 0) .

Indeed, we have proved that, for any Γ ⊂ Rd, we have

∀z > 0, P
(

sup
γ∈Γ
〈g, γ〉 > C(γ2(Γ) + ∆(Γ)

√
z)

)
6 exp(−z) .

Therefore, we have in particular

w(Γ) . γ2(Γ) ∨∆(Γ) .

As the sequences Γ′n satisfy Γ′0 = {0}, we have γ2(Γ) > ∆(Γ), so finally, we
get the estimate

w(Γ) . γ2(Γ) .

A remarkable result, due to Talagrand, that we will prove now, is that we
can conversely show that

γ2(Γ) . w(Γ) .

Hence, γ2(Γ) provides the correct order of magnitude for the Gaussian width
w(Γ).
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7.5 The majorizing measure theorem

The purpose of this section is to show that the generic chaining upper bound
proved in the previous section is tight in the sense that

γ2(Γ) . w(Γ) .

We prove this using classical tools for Gaussian processes that may be of
independent interest.

7.5.1 Another look at γ2(Γ)

Recall the definition of γ2:

γ2(Γ) = inf
Γ′n:|Γ′n|=22n

sup
γ∈Γ

+∞∑
`=0

d(γ,Γ′`)2
`/2,

For any sequence Γ′n, we define A0 = Γ and for any n > 1, let An denote
a partition of Γ, which is a refinement of An−1, such that |An| = 22n and
each element An ∈ An contains exactly one element of Γ′n. Then it is clear
that, if An(γ) denotes the element of An containing γ and diam(An(γ)) =
supγ′,γ′′∈An(γ) ‖γ′ − γ′′‖2 denotes its diameter,

d(γ,Γ′`) 6 diam(A`(γ)) ,

thus, denoting by `0 the first integer such that Γ′n = Γ,

γ2(Γ) 6 inf
An:|An|=22n

sup
γ∈Γ

`0∑
`=0

diam(A`(γ))2`/2 .

We will prove that there exists a numerical constant c such that

w(Γ) > c inf
An:|An|=22n

sup
γ∈Γ

`0∑
`=0

diam(A`(γ))2`/2 .

This proves that

w(Γ) � γ2(Γ) � inf
An:|An|=22n

sup
γ∈Γ

`0∑
`=0

diam(A`(γ))2`/2 .

7.5.2 Gaussian Calculus

We start with elementary results on Gaussian random variables and vectors.

Lemma 67 (Gaussian integration by part). Let X ∼ N(0, 1) denote a stan-
dard Gaussian random variable and let f : R→ R denote a regular function.
Then,

E[f ′(X)] = E[Xf(X)] .
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Proof. Assume first that f has bounded support. We write

E[f ′(X)] =

∫ +∞

−∞
f ′(x)ϕ(x)dx .

We integrate by part, as ϕ′(x) = −xϕ(x), we deduce

E[f ′(X)] = −
∫ +∞

−∞
f(x)ϕ′(x)dx = E[Xf(X)] .

The formula is correct for functions with bounded support. We conclude
the proof using standard approximation arguments.

This result can easily be extended to more general centered Gaussian
random variables: If X = σY ∼ N(0, σ2), then

E[f ′(X)] = E[f ′(σY )] =
1

σ
E[σf ′(σY )] =

1

σ
E[Y f(σY )] =

1

σ2
E[Xf(X)] .

Moreover, if X = Σ1/2Y ∼ N(0,Σ) is a centered Gaussian vector in Rd and
f : Rd → R is differentiable, we have, ∀i ∈ {1, . . . , d},

E[Xif(X)] =

d∑
j=1

Σ
1/2
i,j E[Yjf(Σ1/2Y )]

=

d∑
j=1

Σ
1/2
i,j

d∑
k=1

Σ
1/2
k,j E[∂kf(Σ1/2Y )]

=

d∑
k=1

( d∑
j=1

Σ
1/2
i,j Σ

1/2
j,k

)
E[∂kf(X)]

=

d∑
k=1

Σi,kE[∂kf(X)] =

(
ΣE[∇f(X)]

)
i

.

In the preceding computation, the second inequality is due to the Gaussian
integration by part lemma, the third by symmetry of the square-root Σ1/2

and the last one by standard matrix calculus.
Hence, if X ∼ N(0,Σ),

E[Xf(X)] = ΣE[∇f(X)] .

More generally, if h = (h1, . . . , hd) is a Rd-valued function,

E[〈X,h(X)〉] =
d∑
i=1

E[Xihi(X)] =

d∑
i=1

(
ΣE[∇hi(X)]

)
i

=

d∑
i,j=1

Σi,jE[∂jhi(X)] .

(7.3)
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7.5.3 Slepian’s and Sudakov-Fernique results

Slepian’s lemma is a comparison result that allows to work with a particular
instance of Gaussian process. It states the following:

Lemma 68. Let (Xt)t∈T and (Yt)t∈T denote two Gaussian processes such
that

∀s, t, E[(Xt −Xs)
2] > E[(Yt − Ys)2] .

Then, [Sudakov-Fernique],

E[sup
t∈T

Xt] > E[sup
t∈T

Yt] .

If moreover,

∀t, E[X2
t ] = E[Y 2

t ] ,

then, [Slepian], for any z ∈ R,

P(sup
t∈T

Xt 6 z) 6 P(sup
t∈T

Yt 6 z) .

Proof. We prove the lemma in the case where T is finite, the general case
follows by simple arguments. Let then X and Y denote two independent
centered Gaussian vectors with respective covariance matrices ΣX and ΣY

such that

ΣX
i,j 6 ΣY

i,j .

We define the Gaussian vectors, ∀u ∈ [0, 1], Zu =
√

1− uX +
√
uY ∼

N(0, (1 − u)ΣX + uΣY ). For any twice differentiable function f : Rd → R,
we have

∂uE[f(Zu)] =
1

2
E[
〈
∇f(Zu), u−1/2Y − (1− u)−1/2X

〉
]

=
1

2
√
u
E[〈∇f(Zu), Y 〉]− 1

2
√

1− u
E[〈∇f(Zu), X〉] .

Start with the first term: By (7.3),

E[
〈
∇f(
√

1− uX +
√
uY ), Y

〉
|X] =

√
u

d∑
i,j=1

ΣY
i,jE[∂i,jf(

√
1− uX +

√
uY )|X]

Thus,
1

2
√
u
E[〈∇f(Zu), Y 〉] =

1

2

〈
ΣY ,E[Hf(Zu)]

〉
F

] .

Likewise,

1

2
√

1− u
E[〈∇f(Zu), X〉] =

1

2

〈
ΣX ,E[Hf(Zu)]

〉
F

] .
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Hence,

∂uE[f(Zu)] =
1

2

〈
ΣY − ΣX ,E[Hf(Zu)]

〉
F

] .

Let f(x1, . . . , xd) = 1
β log

∑d
i=1 exp(βxi). Denote by

pi(x) =
exp(βxi)∑d
j=1 exp(βxj)

.

We have

∂if(x1, . . . , xd) = pi(x), ∂i,jf(x1, . . . , xd) =

{
−βpi(x)pj(x) if i 6= j ,

βpi(x)(1− pi(x)) if i = j .

Write σi,j = ΣY
i,j − ΣX

i,j , we have, as
∑d

j=1 pj(z) = 1,

1

β

〈
ΣY − ΣX , Hf(z)

〉
F

] =

d∑
i=1

σi,ipi(z)(1− pi(z))−
∑
i 6=j

σi,jpi(z)pj(z)

=
∑
i 6=j

σi,ipi(z)pj(z)−
∑
i 6=j

σi,jpi(z)pj(z) .

Symmetrically

1

β

〈
ΣY − ΣX , Hf(z)

〉
F

] =
∑
i 6=j

σj,jpi(z)pj(z)−
∑
i 6=j

σi,jpi(z)pj(z) .

Thus,

1

2β

〈
ΣY − ΣX , Hf(z)

〉
F

] =
∑
i 6=j

(σi,i + σj,j − 2σi,j)pi(z)pj(z) .

As

σi,i + σj,j − 2σi,j = E[(Yi − Yj)2]− E[(Xi −Xj)
2] 6 0 ,

it follows that
〈
ΣY − ΣX , Hf(z)

〉
F

] 6 0, thus that u 7→ E[f(Zu)] is non-
increasing, and therefore, that

E[f(X)] = E[f(Z0)] > E[f(Z1)] = E[f(Y )] .

As, for any fixed x = (x1, . . . , xd), we have f(x) grows to maxi=1,...,d xi as
β → +∞, we have, by the monotone convergence theorem,

E[max
i
Xi] > E[max

i
Yi] ,

as desired.
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Assume now moreover that

ΣX
i,i = ΣY

i,i .

Let z ∈ R and κ denote a twice differenciable, non-increasing, non negative
approximation of 1x6z and let f(x1, . . . , xd) =

∏d
i=1 h(xi). The function f

satisfies, for any i 6= j, ∂i,jf(x) = h′(xi)h
′(xj)

∏
k 6=i,j h(xk) > 0, thus

∂uE[f(Zu)] =
1

2

〈
ΣY − ΣX ,E[Hf(Zu)]

〉
F

] > 0 .

Indeed, all terms (ΣY
i,j − ΣX

i,j)∂i,jf(
√

1− uX +
√
uY ) > 0 when i 6= j and

are null when i = j by assumption on ΣX , ΣY . Therefore, the function
u 7→ E[f(Zu)] is non-increasing, hence, E[f(X)] = E[f(Z0)] > E[f(Z1)] =
E[f(Y )]. As this is true for any approximation function h, it follows that

P(max
i
Xi 6 z) 6 P(max

i
Yi 6 z) .

A very nice corollary of Sudakov-Fernique’s result is the following.

Theorem 69 (Sudakov’s minoration). Assume that X is a Gaussian vector
in Rd such that, for any i 6= j,

E[(Xi −Xj)
2] > α2 .

Then we have

E[ max
i∈{1,...,d}

Xi] > α

√
log d

2
.

Proof. Denote by Yi = αgi/
√

2, where g is a standard Gaussian vector. We
have

∀i 6= j, E[(Yi − Yj)2] =
α2

2
E[(gi − gj)2] = α2 6 E[(Xi −Xj)

2] .

Therefore, from Sudakov-Fernique’s bound,

E[ max
i∈{1,...,d}

Xi] >
α√
2
E[ max
i∈{1,...,d}

gi] .

Now we can use the standard result

E[ max
i∈{1,...,d}

gi] >
√

log d ,

to conclude.



7.5. THE MAJORIZING MEASURE THEOREM 105

7.5.4 Talagrand’s recursive bound

Talagrand refined Sudakov’s result to obtain a recursive bound that will
allow to prove the majorizing measure theorem.

Lemma 70. There exists an absolute constant r > 0 such that, for any α >
0 and any α-separated subset of points {γ1, . . . , γd} ⊂ Γ, that is, satisfying

∀i 6= j, ‖γi − γj‖2 > α ,

we have

E[max
γ∈Γ
〈g, γ〉] > α

2

√
log d+ min

i∈{1,...,d}
E[ max
γ∈Γ:‖γ−γi‖26α/r

〈g, γ〉] .

Proof. We write B(γ, r) = {γ′ ∈ Γ : ‖γ − γ′‖2 6 r}. We have

max
γ∈Γ
〈g, γ〉 > max

γ∈∪di=1B(γi,α/r)
〈g, γ〉 .

Now, for any γ ∈ ∪di=1B(γi, α/r), we write

〈g, γ〉 = 〈g, γi〉+ 〈g, γ − γi〉 ,

where γi is chosen such that ‖γ − γi‖ 6 α/r, we deduce

sup
γ∈∪di=1B(γi,α/r)

〈g, γ〉 > max
i
〈g, γi〉+ min

i
E[ sup
γ∈B(γi,α/r)

〈g, γ − γi〉]

−max
i
| sup
γ∈B(γi,α/r)

〈g, γ − γi〉 − E[ sup
γ∈B(γi,α/r)

〈g, γ − γi〉]| .

It comes from the Gaussian concentration inequality and Pisier-Massart’s
lemma that

E
[

max
i
| sup
γ∈B(γi,α/r)

〈g, γ − γi〉 − E[ sup
γ∈B(γi,α/r)

〈g, γ − γi〉]|
]
6 C

α

r

√
log d .

Therefore, the result follows from Sudakov-Fernique’s bound on E[maxi 〈g, γi〉].

7.5.5 Proof of the Majorizing measure theorem

Recall that we intend to bound from bellow

w(Γ) = E[max
γ∈Γ
〈g, γ〉] ,

where Γ denote any finite subset Γ ⊂ Rn. We use the approach mentionned
in Section 7.5.1. For any sequence An of partitions of Γ such that |An| 6 22n ,
for any γ ∈ Γ, we denote by An(γ) ∈ An the element containing γ.

The goal is to prove that there exists a sequence An of partitions such
that

∀γ ∈ Γ,
∑
n

diam(An(γ))2n/2 6 Cw(Γ) .

We explain a possible partitioning scheme and give the main steps of its
analysis in the end of this section.
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Partitionning scheme. Let us first explain how to build a nice sequence
of partitions whose elements A are weighted by α(A) > 0. We proceed
recursively, starting with

A0 = Γ and α(Γ) = ∆(Γ).

Suppose now that we have built An such that

|An| 6 22n ,

and, for each A ∈ An, an upper bound α(A) > ∆(A).

To build the partition An+1 ⊂ An, we split each A ∈ An into at most
22n pieces, so

|An+1| 6
∑
A∈An

22n 6 22n ∗ 22n = 22n+2n = 22n+1
.

Let r denote the real number in Lemma 70. Without loss of generality, we
can assume that r > 4. Let

γ1 ∈ argmaxw

{
B

(
γ,
α(A)

r

)
∩A

}
,

A1 = B

(
γ1,

α(A)

r

)
∩A, α(A1) =

α(A)

r
, D2 = A \A1 .

Then, as long as ` < 22n and D` 6= ∅,

γ` ∈ argmaxw

{
B

(
γ,
α(A)

r

)
∩D`

}
,

A` = B

(
γ`,

α(A)

r

)
∩D`, α(A`) =

α(A)

r
, D`+1 = D` \A` .

If D22n 6= ∅, we state

A22n = D22n , α(A22n ) = α(A) .

Let m 6 22n denote the number A`. The centers γ1, . . . , γm are α(A)/r sep-
arated by construction. Besides, the weights α(A`) are all equal to α(A)/r
except possibly the last one α(Am) that may be α(A) if m = 22n . Finally,
the Gaussian width w

{
B
(
γi, α(A)/r

)}
are non increasing.

We continue until the partition An is only made of singletons.

Analysis 1: The tree. Let us now build a tree whose root is A0, and the
children of each A ∈ An are given by the elements of its partition A1, . . . , Am
described in the previous section. Each edge (A,Ai) is weighted α(Ai)2

n/2

so, for each γ ∈ Γ,∑
n

diam(An(γ))2n/2 6
∑
n

α(An(γ))2n/2 := W (γ) .
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W (γ) is thus the weight of the path from the leaf γ in the tree to the root.
We intend to prove that

∀γ ∈ Γ, W (γ) 6 Cw(Γ) .

Analysis 2: Decompositions of the sum. We break the sum defining
W (γ) into the moments nk where An(γ) is the last element of the partition,
that is those where α(An(γ)) = α(An−1(γ)), and the instant in-between.
We have

W (γ) =
∑
k

α(Ank(γ))2nk/2 +

nk+1−1∑
n=nk+1

α(An(γ))2n/2

6
∑
k

α(Ank(γ))2nk/2 +
+∞∑
j=1

α(Ank(γ))

rj
2(nk+j)/2

6 2
∑
k

α(Ank(γ))2nk/2 .

The last inequality holds as r > 4. Besides, for any ` > 0, if nk+` = nk + `,
we have

nk+`∑
nk

α(An(γ))2n/2 6 α(Ank+`(γ))2nk+`
∑
j

2−j/2 6

√
2√

2− 1
α(Ank+`(γ))2nk+` .

Hence, we can assume that α(Ank+1
(γ)) 6 α(Ank(γ))/r.

Analysis 3: Talagrand’s recursive lemma. To prove that this last
upper bound can be bounded from above by the Gaussian width w(Γ), we
proceed recursively using Talagrand’s recursive minoration lemma. We start
with k = 1. The cell An1−1(γ) contained points γ1, . . . , γ22

n1 = γ that are
α(An1(γ))/r separated, so by Talagrand’s recursive minoration lemma:

w(An1−1(γ)) >
α(An1(γ))

2r
2n1/2 + w(B(γ, α(An1−1(γ))/r) ∩D22

n1 ) .

The min in Talagrand’s minoration lemma is replaced here by the ball cen-
tered in γ by definition of the γi, which made the sequence w(B(γi, α(An1(γ))/r)∩
Di) non-increasing.

Now it follows from α(An2(γ)) 6 α(An1(γ))/r that

An2−1(γ) ⊂ B(γ, α(An1−1(γ))/r) ∩D22
n1 ,

hence

w(An1−1(γ)) >
α(An1(γ))

2r
2n1/2 + w(An2−1(γ)) .
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Proceeding recursively, it follows thus that

w(Γ) > w(An1(γ)) >
1

2r

∑
k

α(Ank(γ))2nk/2 =

√
2− 1

4
√

2r
W (γ) .

As this is true for any γ ∈ Γ, this concludes the proof of the majorizing
measure theorem.
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