Submitted
- Finite-sample performance of the maximum likelihood estimator in logistic regression, with H. Chardon and J. Mourtada (2024), arXiv:2411.02137.
- Online Matching in Geometric Random Graphs, with F. Sentenac, N. Noiry, L. Ménard and V. Perchet (2023), arXiv:2306.07891.
- Inference via robust optimal transportation: theory and methods, with Y. Ma, H. Liu and D. La Vecchia (2023), arXiv:2301.06297.
- Mean estimation for Randomized Quasi Monte Carlo method, with E. Gobet and D. Métivier (2022), hal-03631879v10.
- A Bayesian nonparametric approach for generalized Bradley-Terry models in random environment, with S. Le Corff and E. Vernet, (2018), arXiv:1808.08104.
Published and Accepted
- Active Ranking and Matchmaking, with Perfect Matchings, with H. El Ferchichi and V. Perchet, ICML (2024), 235:13460-13480, 2024.
- Pair Matching: When bandits meet stochastic block model, with C. Giraud, Y. Issartel and L. Lehéricy, accepted for publication at MSL (2023), arXiv:1905.07342.
- Optimal Change-Point Detection and Localization, with M. Fromont, P. Reynaud-Bouret and N. Verzelen, Ann. Statist., 51, 4 (2023), 1586-1610 arXiv:2010.11470.
- On the robustness of the minimum $\ell_2$-interpolator, with G. Chinot, accepted for publication at Bernoulli, (2022), arXiv:2003.05838.
- Median of means principle as a divide-and-conquer procedure for robustness, sub-sampling and hyper-parameters tuning, with J. Kwon and G. Lecué, Electron. J. Stat., 15, 1, (2021), 1202-1227, arXiv:1812.02435.
- Cross-validation improved by aggregation: Agghoo, with G. Maillard and S. Arlot, accepted for publication in J. Mach. Learn. Res., (2020), arXiv:1709.03702.
- Robust high dimensional learning for Lipschitz and convex losses, with G. Chinot and G. Lecué, J. Mach. Learn. Res., 21, 233, (2020), 1-47, arXiv:1905.04281.
- Learning the distribution of latent variables in paired comparison models, with R. Diel and S. Le Corff, Bernoulli, 26, 4, (2020), 2670-2698. arXiv:1707.01365.
- A quantitative Mc Diarmid's inequality for geometrically ergodic Markov chains, with A. Havet, E. Moulines and E. Vernet, Electron. Commun. Probab., 25, (2020), arXiv:1907.02809.
- Robust classification via MOM minimization, with G. Lecué and T. Mathieu, Mach. Learn. 109, 8, (2020), 1635-1665, arXiv:1808.03106.
- Statistical learning with Lipschitz and convex loss functions, with G. Chinot and G. Lecué, Probab. Theory Related Fields, 176, (2020), 897–940, arXiv:1810.01090.
- MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means, with Zoltan Szabo, T. Mathieu and G. Lecué, (2019), ICML, PMLR 97:3782-3793, arXiv:1802.04784.
- Robust machine learning by median-of-means : theory and practice, with G. Lecué, Ann. Statist., 48, 2, (2020), 906-931, arXiv:1711.10306.
- Density estimation for RWRE, with A. Havet, E. Moulines, Math. Meth. Statist., 28, 1, (2019), 18-38, arXiv:1806.05839.
- Learning from MOM's principles : Le Cam's approach, with G. Lecué, Stoch. Proc. Appl, 129, 11, (2019), 4385-4410, arXiv:1701.01961.
- Non parametric estimation for random walks in random environment, with R. Diel, Stoch. Proc. Appl 128, 1 (2018) 132-155 arXiv:1606.03848.
- The number of potential winners in Bradley-Terry model in random environment, with R. Chetrite and R. Diel, Ann. Appl. Probab. 27, 3 (2017) 1372-1394 arXiv:1509.07265.
- Sub-Gaussian mean estimators, with L. Devroye, G. Lugosi and R. I. Oliveira, Ann. Statist. 44, 6 (2016) 2695--2725 arXiv:1509.05845.
- Family wise separation rates for multiple testing, with M. Fromont and P. Reynaud-Bouret, Ann. Statist., 44, 6 (2016) 2533-2563 hal-01107321v1.
- Parallel and pseudorandom discrete event system specification vs. networks of spiking neurons: Formalization and preliminary implementation results, with A. Muzy, F. Grammont, V.T. Dao and D.R.C. Hill, HPCS, Innsbruck, Austria, (2016).
- Optimal kernel selection for density estimation, with N. M. Magalhaes and P. Reynaud-Bouret, High dimensional probabilities VII: The Cargese Volume , volume 71 of Prog. Proba., Birkhauser (2016) 435--460 hal-01224097.
- Choice of V for V-fold cross-validation in least-squares density estimation, with S. Arlot, J. Mach. Learn. Res.; 17 (2016) (208):1--50, arXiv:1210.5830.
- Estimator Selection, Esaim Proc., 51 (2015) 232--245.
- Sharp oracle inequalities and slope heuristic for specification probabilities estimation in general random fields, with D.Y.Takahashi, Bernoulli, 22, 1 (2016) 325--344, arXiv:1106.2467.
- Markov approximation of chains of infinite order in the $\bar{d}$-metric, with S. Gallo and D.Y.Takahashi, Markov Process. Related Fields, 19 (2013) 51--82 arXiv:1107.4353.
- Kernels based tests with non-asymptotic bootstrap approaches for two-sample problem, with M. Fromont, B. Laurent and P. Reynaud-Bouret, COLT, 23 (2012) 23.1--23.23.
- An Oracle Approach for Interaction Neighborhood Estimation in Random Field, with D. Y. Takahashi, Electron. J. Stat., 5 (2011) 534--571, arXiv:1010.4783.
- Optimal model selection in density estimation, Ann. Inst. Henri Poincarré, 48, 3 (2012) 884--908, arXiv:0910.1654.
- Optimal model selection for density estimation of stationary data under various mixing conditions, Ann. Statist, 39, 1 (2011) 1852--1877 , arXiv:0911.1497.
- Adaptive non-asymptotic confidence balls in density estimation, ESAIM P&S, 16 (2012) 61--85, arXiv:1007.4528.
- Adaptive density estimation for stationary processes, Math. Meth. Statist. 18, 1 (2009) 59--83, arXiv:0909.0999.